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ABSTRACT
Recent advances in neural network based language models lead to

successful deployments of such models, improving user experience

in various applications. It has been demonstrated that strong perfor-

mance of languagemodels comes alongwith the ability tomemorize

rare training samples, which poses serious privacy threats in case

the model is trained on confidential user content. In this work,

we introduce a methodology that investigates identifying the user

content in the training data that could be leaked under a strong

and realistic threat model. Motivated from the notion of plausible

deniability, we introduce a privacy metric and illustrate how the

proposed metric can be utilized to investigate the efficacy of miti-

gations such as differentially private model training under realistic

deployment scenarios.
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1 INTRODUCTION
Advances in language modeling have produced high-capacity mod-

els which perform very well on many language tasks. Language

models are of particular interest as they are capable of generating

free-form text, given a context, or even unprompted. There is a

plethora of applications where language models have the oppor-

tunity to improve user experience, and many of them have been

deployed in practice to do so, such as text auto-completion in emails

and predictive keyboards (Fig. 1). Language models with massive

capacities have been shown to achieve strong performance in other
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tasks as well, e.g. translation, question-answering etc. even in a

zero shot setting without fine-tuning in some cases [6].

On the other hand, recent studies have demonstrated that these

models can memorize training samples, which can be subsequently

reconstructed using probing attacks, or even during free-form gen-

eration [7, 8]. While domain adaptation of general phrases is in-

tended, the model should not leak or memorize any information

linkable to a user in the training set, which could lead to a privacy

breach according to GDPR, such as singling out of a user [4].

Figure 1: Two language model deployments in practice. The
figure on the left (image credit: [20]) is the Smart Compose
feature for Gmail [10] and the figure on the right (image
credit: [25]) is the Microsoft SwiftKey Keyboard.

Among various privacy mitigation techniques, differential pri-

vacy (DP) [13] has become the gold standard notion of privacy,

widely employed in the industry [3, 19, 46]. Training machine

learning models with DP-SGD [1, 38] allow the participants to

be protected under the theoretical guarantee that with a high prob-

ability the same machine learning model could have been obtained

had they not been part of the dataset. This guarantee gives each par-

ticipant the notion of plausible deniability and protects against

GDPR’s singling out [12]. Training machine learning models with

DP has also achieved favorable utility-privacy trade-offs in the

context of language modeling as shown in [24].

The guarantees provided by DP hold with the premise that it

is implemented correctly, as previous work showed that the im-

plementation may be error-prone from multiple angles [18, 42].

Therefore, it is of importance to have an additional privacy analysis

step to ensure that the mitigation is intact, and no privacy violation

may occur through interactions with a deployed private model.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this work we propose a methodology for privacy investiga-

tions of a language model trained on confidential user content.

Furthermore, motivated by the notion of plausible deniability, we

introduce a metric that quantitatively measures how well the ex-

pected plausible deniability holds prior to the model deployment.

We consider a realistic threat model under the strictest black-box

assumptions about access to the model, i.e. that attackers can ac-

cess only the model’s top-𝑘 prediction at each token position, given

an input prefix. This choice of threat model enables us to assess

a model’s risk for realistic deployment scenarios, assuming best

practices in API hardening are employed. Another advantage of

our metric is that it can assess the privacy efficacy of DP under this

realistic adversary as DP-SGD analysis is based on a very powerful

adversary which has access to all intermediate computations used

to train a model.

1.1 Contributions
This paper makes the following contributions:

(1) We propose a methodology that investigates the user content

in the training set that could be leaked by the model when

prompted with the associated context.

(2) Motivated by the notion of plausible deniability offered by

DP, we introduce a privacy metric that gives a measure of

this notion holding over users in the training set.

(3) We consider a realistic and practical threat model to evaluate

the efficacy of DP
1
under realistic deployment scenarios. We

show in our experiments that relatively larger epsilon val-

ues provide reasonable plausible deniability while achieving

favorable utility for the model.

2 THREAT MODEL
Our threat model is tailored for privacy considerations when a lan-

guage model is trained on confidential user content, which contains

linkable information that would lead to privacy violations in case

they are leaked by the model [4, 41]. Such privacy considerations

are in fact legitimate as language models perform next token pre-

diction so they could be used in a generative fashion by entering a

particular text prefix and asking the model to auto-complete indefi-

nitely. Here, the danger is imminent as it is not a priori clear what
will be leaked from the user content in the training data. Since the

main objective of training language models is modeling the under-

lying distribution of a language, well-generalized models are not

expected to memorize the user-specific information in the training

data, as they are in general out-of-distribution and irrelevant to

the learning task, hence unnecessary to improve the model perfor-

mance. Recent results show that this is not the case [5, 7, 8, 14, 32].

When the data distribution is long-tailed (as is the natural language

[30]), it has been shown that label memorization is necessary for

achieving near-optimal accuracy on test data [5, 14]. Therefore,

it is imperative to use privacy-preserving tools and build privacy

monitoring techniques to minimize the chances of an “accidental"

data leakage to prevent privacy violations.

1
In fact, our metric can also be used on a pipeline where DP is not employed, e.g. to

evaluate the efficacy of heuristic mitigations.

Based on the discussion above, we consider a practical threat

model that is relevant to the language models deployed in prac-

tice. We assume a black-box access, where a curious or malevolent

user can query a pre-trained and deployed language model on any

sequence of tokens 𝑤1, . . . ,𝑤𝑖 and receive the top-𝑘 predictions
2

returned by the model for the next token𝑤𝑖+13.
The threat model allows a curious user to know whether any

sensitive information in their data is leaked by the model. Therefore,

the data owner can use any prefix in their data to query the model.

The threat model also includes the case of a malevolent user, who

can input directed queries in order to extract sensitive information

about a targeted user.

3 TRAINING DATA LEAKAGE ANALYSIS
In this section, we introduce our framework to investigate a model

trained on user content for the purpose of user-level privacy pro-

tection. We fix the notation first.

Notation. For a language model trained on user content, let D =

∪𝑖∈{1,2,...,𝑛} D𝑖 be the training data, which is the union of all user

content whereD𝑖 corresponds to the content of user 𝑖 . Without loss

of generality, we assume that D𝑖 contains sequence(s) of tokens

𝑤1,𝑤2, . . . of arbitrary length.

We introduce our training data leakage analysis on a language

model after being trained on the training data D. The first step of

our framework is to run the model through the training data and

collect its correct predictions in the training data. We illustrate this

step with an example in Fig. 2. This collection consists of sequences

of tokens where the correct prediction is observed in top-𝑘 predic-

tions of the model consecutively. We emphasize that consecutive

correct predictions is an important phenomenon because the longer

the model leaks a training sequence𝑤𝑖+1,𝑤𝑖+2, . . . having seen the

context𝑤1, . . . ,𝑤𝑖 , the more it discloses user content, causing pri-

vacy concerns. Therefore, we do not break sequences where the

model provides correct predictions consecutively and collect all

such sequences in the training data. In Algorithm 1 we provide

the pseudo-code to collect the correct predictions of the model as

described above. Let us denote this collection as S.
As we are considering user-level privacy, in the next step we

count for each sequence in S the number of distinct users for

which the sequence is found in their data. In other words, we

generate a dictionary where each sequence in S is mapped to the

number of users having this sequence in their dataset. We note that

sequences for which the user count is large are indicative of general

population-level phrases, which is beneficial for the model to learn

to achieve domain adaptation. On the other extreme, sequences for

which the user count is one is inarguably the case with the most

potential to result in privacy violations since leakage of a unique

content of a user may lead to singling out of that user.

2
The parameter 𝑘 depends on the application as in Fig. 1.

3
We note that even the availability of the next token prediction(s) may not always

be the case if the model does not return any prediction under certain conditions (e.g.

when the prediction score is below a pre-fixed triggering threshold [10]). Our work is

trivially applicable in such settings as well.

4
Assuming a single sequence for simplicity, and without loss of generality.
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Figure 2: An illustration of the collection of correct model
predictions.We run themodel through each sequence in the
training data and obtain the top-𝑘 (top-1 in this example)
prediction(s). We then collect the sequence of tokens where
the model consecutively provides the correct prediction.

Algorithm 1 The collection of correct model predictions.

Input: A language model 𝐿𝑀 (·) and the corresponding training

data D
Output: The (multi)set S of correct predictions

Initialize S = []
for 𝑖 = 1 to 𝑛 do

Initialize𝑊 = “”

Let 𝐷𝑖 = [𝑤1, . . . ,𝑤 |𝐷𝑖 |]4
for 𝑙 = 1 to |𝐷𝑖 | do

Obtain top-𝑘 predictions 𝑝𝑟𝑒𝑑𝑠 = 𝐿𝑀 (𝐷𝑖 [: 𝑙])
if 𝑤𝑙 ∈ 𝑝𝑟𝑒𝑑𝑠 then

Append𝑤𝑙 to𝑊

else if𝑊 ≠ “” then
Append𝑊 to S and initialize𝑊 = “”

end if
end for

end for

Let us denote the set of sequences in S that are unique to a user

as Suniq. These unique sequences could potentially be learned due

to the presence of their corresponding users in the training data.

Therefore, motivated by the notion of plausible deniability, we at-

tempt to understand whether these predictions of the private model

could have been made had these users were not in the training set.

In this regard, we introduce a reference model that is trained on a

dataset containing no user in the set Suniq. Our privacy metric, the

worst-case leakage epsilon, is defined as follows:

𝜖𝑙 ≜ max

𝑤∈Suniq

log

(
PP

reference
(𝑤)

PPprivate (𝑤)

)
, (1)

where PP
model

(·) denotes to the perplexity of a sequence given by

the model. Our privacy metric measures the perplexity ratio with

respect to a reference model maximized over the sequences in the

set Suniq to capture the worst-case scenario.

We note that a smaller 𝜖𝑙 for a private model translates into a

better privacy protection. This is because the unique sequences

leaked by the model will have relatively similar perplexities with

respect to a reference model, which is trained on a set that does not

include any user in Suniq, therefore, providing plausible deniability

for all the users in the private training set.

4 CASE STUDY: TAB ATTACK
We study a large-scale example as a realistic setup for the deployed

language models in practice. We consider an attack setting that has

access to top-1 predictions of a language model. Having in mind

the text auto-completion feature in emails where the predictions

are applied by pressing the TAB key on the keyboard (see Fig. 1),

we dub this as the tab attack. We investigate the unique sequences

(Suniq) that could be leaked via the tab attack when the model

is queried with the corresponding context. We apply our privacy

metric over Suniq to assess the attack surface under the tab attack

threat model.

Dataset. We use a large dataset of Reddit posts, as decribed by

Al-Rfou et al. [2], that contains 140M sentences from 4.4M users for

a randomly chosen month (Oct 2018). It is randomly split into 90%

training and 10% validation sets. We provide three sets of language

models trained on this private Reddit dataset.

(1) A language model trained on the Reddit dataset. This will

be referred to as Private LM in our results.

(2) A language model trained on the Reddit dataset with differ-

ential privacy [1, 24]. We take three snapshots of the model

during training, corresponding to three DP language models

with epsilons 3.28, 4.68, and 6.20
5
. The training begins with

a random initialization of the weights. The models will be

referred to as DP-LM RanIni 𝜖 = ·.
(3) A language model trained on the Reddit dataset with differ-

ential privacy. Here, the model weights are initialized from a

public model trained on Google News dataset [9]. It has been

shown that transfer learning helps obtaining strong privacy

guarantees with a minor cost in utility [1, 24, 31, 39]. We

similarly take two snapshots of the model during training,

corresponding to two DP language models with epsilons 2.98

and 6.68. These models and the public model will be referred

to as DP-LM PubIni 𝜖 = · and Public LM respectively.

The model architecture is same for all these models and the

details are specified below.

Model. We use a one-layer GRU model as the language model

for the next-word prediction task. The embedding size is set to 160

and the hidden size to 512, and the vocabulary is fixed to the most

frequent 10k words in the training corpus (out of 3.2M words). We

use the Adamax optimizer with the learning rate set to 1e-3 and the

batch size is set to 3072 in the DP training and to 512 otherwise.

Reference Model. The reference model in Eq. (1) is taken as fol-

lows. For a given private model, we generate the set Suniq and take

the users in Suniq and remove all their data from the training data.

We subsequently train a new model using exactly same procedure

as the original model on the remaining users. We consider the new

model as the reference model in Eq. (1) since it has not seen any

data of users in Suniq during its training.

We provide in Table 1 the performances of the models and the

result of the tab attack for each of them. We discuss the results of

this experiment in what follows.

We observe from Table 1 that the private LM that is trained

without DP leaks a huge number of unique sequences (3757) from

5
The models satisfy user-level DP and 𝛿 ≲ 1/(# users) same for all models.
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Table 1: Results of training RNN-based language models on Reddit dataset. We provide the perplexity and accuracy on the
validation set to compare the performances of the models. In the next column, we provide the number of unique sequences
(|Suniq |) for each model. We calculate leakage epsilon 𝜖𝑙 for some of the models for comparison in the last column.

Model Val perp Val acc (%) # uniqe seq.

(
|Suniq |

)
𝜖𝑙

Private LM 69.4 23.7 3757 17.75

DP-LM RanIni 𝜖 = 3.28 290.0 14.5 0 -

DP-LM RanIni 𝜖 = 4.68 130.3 19.6 5 -

DP-LM RanIni 𝜖 = 6.20 107.8 20.8 11 0.64

Public LM 757.5 13.1 159 -

DP-LM PubIni 𝜖 = 2.98 183.1 19.7 157 0.29

DP-LM PubIni 𝜖 = 6.68 92.8 22.2 246 1.33

the training data. There are 759 unique sequences for which the

number of tokens is larger than 9. A majority of these examples

are coming from highly-repeated sentences (728 of these sequences

are repeated somewhere between 50-34372 times) by the bots in

the Reddit dataset
6
. Expectedly, the resulting 𝜖𝑙 = 17.75 is very

large and it does not offer any reasonable plausible deniability. We

calculated 𝜖𝑙 among the unique sequences that do not repeat more

than once and found that it is 4.60. This shows the importance of de-

duplication at a granular level (e.g. removal of sentence duplicates)

as also observed in [7, 8, 21].

For the DP-LMs that are snapshots of a model trained with

random initialization of weights, we observe a small number of

unique sequences leaked by the models. Interestingly, we get no

unique sequence with the first one having 𝜖 = 3.28, although there

is a high cost in terms of utility. We observe the efficacy of user-

level DP training by noting that the unique sequences with large

repetitions that were memorized by the private model have all

disappeared with DP-LMs.

For the DP-LMs initialized from a public model, we observe rel-

atively larger number of unique sequences leaked by the models.

However, this is not surprising as the public model itself can pre-

dict 159 unique sequences in the private data, without seeing any

private data in its training. Since the DP training is initialized from

the public model, it should be expected to yield a larger number

of unique sequences. This shows that our privacy metric leakage

epsilon 𝜖𝑙 may provide a better ground for a fair comparison of mod-

els trained in different ways (e.g. random initialization vs. transfer

learning).

We calculate leakage epsilon 𝜖𝑙 for three DP-LMs for comparison.

We observe that DP-LM PubIni 𝜖 = 2.98 model has 𝜖𝑙 = 0.29, much

smaller than the models DP-LM RanIni 𝜖 = 6.20 with 𝜖𝑙 = 0.64

and DP-LM PubIni 𝜖 = 6.68 with 𝜖𝑙 = 1.33. This is expected since

𝜖 = 2.98 provides a much stronger privacy guarantee compared

to 𝜖 = 6.20 and 𝜖 = 6.68. We note that all three models have quite

small 𝜖𝑙 values, indicating that the unique sequences leaked by

these models can also be simply learned from other users because

they have similar perplexities with respect to the reference model.

This offers a reasonable plausible deniability even when the DP-𝜖

value is relatively large such as 𝜖 = 6.68 and does not provide a

strong theoretical privacy guarantee.

6
An example of a unique sequence memorized by the model is “has been automatically

removed because the title does not include one of the required tags ." repeated 5377

times in the bot’s data.

5 RELATEDWORK AND CONCLUSION
A wide body of work has demonstrated privacy issues in general

for machine learning models trained on personal data. Language

models are among the most to suffer as they are capable of gener-

ating text which may potentially leak sensitive user content and

lead to serious privacy violations.

Zhang et al. [45] show that deep learning models can achieve

perfect accuracy even on randomly labeled data. Suchmemorization

capability may in fact be needed to achieve near-optimal accuracy

on test data when the data distribution is long-tailed as recently

shown by Brown et al. [5], Feldman [14]. Unfortunately this can

lead to a successful training data extraction attack, as in the case

for the work [8] that can recover training examples from the GPT-2

languagemodel [33]. In their method, Carlini et al. [8] generate a list

of sequences by sampling from the GPT-2 language model and then

curate it by using the perplexity measure. In a related line of work

which exploits the transfer learning setup, Zanella-Béguelin et al.

[44] have demonstrated that having simultaneous black-box access

to the pre-trained and fine-tuned language models allows them to

extract rare sequences from the smaller and typically more sensitive

fine-tuning dataset. Both attacks rely on the model output beyond

top-1 or top-3 predictions alongwith the perplexitymeasure. Access

to this information may easily be restricted in deployed language

models. Nevertheless, there are serious privacy concerns since the

attacks can extract personally identifiable information even if they

are present in one document in the training data. We believe that

our proposed procedure for privacy investigations of a language

model trained on user content could be very beneficial to protect

user-level privacy in the presence of such attacks.

On the other hand, Carlini et al. [7] introduced the exposure

metric to quantitatively assess the unintentional memorization phe-

nomenon occurring in generative sequence models. They do so by

inserting randomly-chosen canary sequences a varying number of

times into the training data and measuring the relative difference

in perplexity between inserted canaries and non-inserted random

sequences. Our work is complementary in the sense that we are

investigating the information leaked from user content in the train-

ing data, having in mind a strong threat model where one can

query the language model with the precise context appearing in

the training data. We believe that our proposed metric along with

the exposure metric can be employed together to provide strong

privacy guarantees for a deployed language model.



Training Data Leakage Analysis in Language Models Conference’17, July 2017, Washington, DC, USA

Another line of work has studied the vulnerability of machine

learning models to membership inference attack [11, 15–17, 22,

23, 26, 28, 34–37, 40, 43]. The goal is to determine if a particular

data record (or more generally data of a given user) belongs to

the training set of the model. Although being an indirect leakage,

membership inference is considered as a confidentiality violation

and potential threat to the training data from models [27]. A recent

work [29] used a similar idea to calculate lower bounds for the

privacy offered by DP-SGD under various settings.

The main framework with theoretical guarantees for user-level

privacy is the application of differential privacy (DP) [13] to model

training. DP makes provable guarantees about the privacy of a

stochastic function of a given dataset. Differentially private stochas-

tic gradient descent (DP-SGD) has been developed and applied to

training machine learning models [1, 38]. This is an active area of

research with the goal of pushing the frontiers of privacy-utility

trade-off for deep neural networks.

5.1 Conclusion
This work introduced a methodology to investigate information

leaked by a languagemodel from its training data in terms of privacy.

Based on the notion of plausible deniability offered by DP, we

proposed a metric that could be used to quantify how well the users

participating in the training data enjoy plausible deniability in the

private model to be deployed. We believe our framework can be

incorporated into the training platform of language models that

would help assess the model from the perspective of privacy, along

with its utility.
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