A Variational Inference Approach for Locally Private Inference of Poisson Factorization Models

Alexandra Schofield
Cornell University
xanda@cs.cornell.edu

Aaron Schein
University of Massachusetts, Amherst
aschein@cs.umass.edu

Zhiwei Steven Wu
University of Minnesota
zsww@umn.edu

Hanna Wallach
Microsoft Research
hanna@dirichlet.net

Abstract

Recent work that introduces local privacy to Bayesian Poisson factorization model inference, but its proposed MCMC algorithm for inference suffers from significant performance issues. We derive a coordinate ascent variational inference algorithm to infer factorization models efficiently from private data. Our model relies on several new properties we prove about Bessel distributions. Our method produces a factor of 20 speedup in a synthetic experiment for model inference.

1 Introduction

Poisson factorization models are a powerful tool in social science and machine learning for understanding data generated by people. For instance, a corporate email corpus can surface count data such as interactions between parties, counts of words in documents, and logs of types of events and their actors recorded in these messages. However, these data may also encode interactions and content that their human generators wish to keep private, which risks leaking information specific to a few interactions in the final low-rank model.

Most existing methods for private inference of exponential family models operate in the central model [15, 3], in which a trusted aggregator collects all the data and perturbs it to ensure privacy. Recent work by [20] provides a privacy-preserving method for Poisson factorization models in the local model, in which individual users perturb their own data to ensure privacy without relying on any trusted party. The privacy guarantee uses a generalization of local differential privacy [26] called limited-precision local privacy, which allows privacy protection on observations of variable scales (e.g. ranging from an entire document to a single word token). A corresponding MCMC procedure for inference of Poisson factorization models from prior work by [20] relies on the recharacterization of the traditional data generative process to include the addition of perturbation through two-sided geometric noise [12], with the true data characterized a random variable generated using the Skellam and Bessel distributions.

The implementation of this method in prior work applies an MCMC approach to iteratively resample the latent variables, such that after an initial burn-in period of resampling, these samples may be aggregated to estimate the true model parameters. However, this approach to private Bayesian Poisson matrix factorization is prohibitively slow for two primary reasons. First, it requires sampling from the Bessel distribution, which is much slower than sampling for nonprivate Poisson factorization. Second, the addition of private noise produces a denser matrix of observations, in which no observed zero entry in the data is necessarily a true zero in the original data. This addition converts inference from a sparse problem, where zero counts could be ignored, to a dense one, where every entry in the observed data requires an expensive sampling procedure.
We propose a new mean-field variational inference (VI) procedure to infer these models. To do this, we first prove that the Bessel distribution is in the exponential family if its parameter \(\nu \) is fixed, and that it is the optimal Q-distribution for the latent count variables of the true data. However, traditional mean-field inference fails, as the resulting expectation disrupts downstream inference due to the non-integer value of the expectation of the Bessel. We overcome this obstacle by defining the Q-distribution over the count to be a delta-spike at the mode of the optimal Bessel distribution (which is integral, by definition). To show that this mode approximation is close to the value obtained using the mean, we prove that the absolute difference between the mean and mode of a Bessel distribution is bounded by one. Finally, we show that in a synthetic experiment, this method converges to reasonable estimates of the true model parameters 20 times faster than the MCMC approach.

2 Background

Bayesian inference describes a family of methods to infer the posterior distribution \(P(Z \mid Y) \) of latent variables \(Z \) given data \(Y \). This is most often performed using Markov chain Monte Carlo (MCMC) or mean-field coordinate ascent variational inference (CAVI). An MCMC inference algorithm iteratively re-samples each latent variable from its complete conditional \(z_n \sim P(z_n \mid Z_{\setminus n}, Y) \) where \(Z_{\setminus n} \) denotes the set of all latent variables except \(z_n \). CAVI inference algorithms specify a factorized variational distribution over latent variables \(Q(Z) = \prod_n Q(z_n) \) and then optimize its parameters to minimize the KL-divergence from it and to the exact posterior. A general result is that the optimal factorized \(Q(Z) \) consists of \(Q(z_n) \) factors that are proportional to the geometric expectation of the corresponding complete conditional—i.e., \(Q^*(z_n) \propto G_{Q,z_n}[P(z_n \mid Z_{\setminus n}, Y)] \) where the geometric expectation is \(G[\cdot] = \exp(\mathbb{E}[\ln \cdot]) \). In practice, CAVI requires orders of magnitude fewer iterations than MCMC to converge and is easier to adapt to large-scale streaming data settings.

Poisson factorization [23, 8, 30, 13, 14] is a broad class of models for learning latent structure from discrete data, containing many of the most widely used models in the social sciences. including topic models for text corpora [4, 6, 7], population models for genetic data [16], stochastic block models for social networks [2, 13, 29], and tensor factorization for dyadic data [27, 10, 22, 18, 21]. It further includes deep hierarchical models [17, 31], dynamic models [9, 11, 19], and many others.

Poisson factorization assumes that each observed count \(y_k \) is a Poisson random variable—i.e., \(y_k \sim \text{Poisson}(\mu_k) \)—with unknown rate parameter \(\mu_k \) that is a deterministic function of shared model parameters. We use the multi-index notation \(i \) for generality; in the special case of Poisson matrix factorization, each count is indexed by a row and a column—i.e., \(i = (d, v) \)—and its latent rate is defined as the dot product of corresponding row and column parameters—i.e., \(\mu_k = \mu_k = \theta_d \phi_v \). In many cases, the latent rate is defined to be a linear function of shared model parameters—i.e.,

\[
\mu_k = \sum_{k=1}^K \mu_{kk},
\]

where \(\mu_{kk} \) is a function of latent parameters specific to latent component \(k \). In Poisson matrix factorization, we define \(\mu_{kk} \) as the product of the latent parameters associated with \(i = (d, v) \), or \(\mu_{kk} = \theta_{dk} \phi_{kv} \).

MCMC inference for Poisson factorization is a popular iterative Bayesian inference algorithm. In nonprivate Poisson factorization, When the latent rate is a linear function, the observed count can be interpreted as the sum of latent sub-counts—i.e., \(y_k = \sum_{k=1}^K y_{kk} \)—where each sub-count is an independent Poisson random variable \(y_{kk} \sim \text{Poisson}(\mu_{kk}) \). The first step in MCMC inference is to sample the vector of sub-counts \(\tilde{y}_k = (y_{kk})_{k=1}^K \) from its complete conditional, which is a multinomial whose priors are determined by \(\mu_k \):

\[
(\tilde{y}_k \mid \mu_k) \sim \text{Multinom}(y_{kk}, \mu_k)
\]

where \(\mu_k = (\mu_{kk})_{k=1}^K \). The multinomial distribution is often parameterized with a probability vector \(p_k \). In this paper, we parameterize it using a proportionality vector \(\mu_k \) which leaves implicit the normalization step—i.e., \(p_k = \frac{\mu_k}{\sum_{k=1}^K \mu_{kk}} \). Conditioned on samples of the sub-counts, updates to the other latent variables are model-specific—i.e., depend on the particular structure of the rate function and the priors over the parameters. However, in what follows, we derive a general approach that applies to all models with a linear rate \(\mu_k \).

Coordinate Ascent Variational Inference (CAVI) for Poisson factorization is an alternate approach to MCMC. It relies on the approximation of the true posterior distribution of the factorization model with a set of variational distributions whose distributions are independent. By iteratively
Towards this goal, we prove the following two related propositions:

Proposition 1. The optimal variational family for $\tilde{\mathbf{y}}_i$ is proportional to the geometric expectation of its complete conditional (given in Equation 1) and equal to:

$$Q^*(\tilde{\mathbf{y}}_i) = \text{Multinom} \left(\tilde{\mathbf{y}}_i; y_i, \left(\mathbf{G}_Q[\mu_{ik}] \right)_{k=1}^K \right)$$

(2)

The geometric expectations $\mathbf{G}_Q[\mu_{ik}] = e^{E_Q[\ln \mu_{ik}]}$ can be understood as messages from the factors $Q(\mu_{ik})$ in the context of a message-passing algorithm between variational parameters. In standard cases, these expectations are available in closed-form. The factors $Q(\mu_{ik})$ depend in turn on messages from $Q(y_i)$ expressed via the expectation of y_i:

$$E_Q[y_{ik}] = y_i \frac{\mathbf{G}_Q[\mu_{ik}]}{\sum_{k'=1}^K \mathbf{G}_Q[\mu_{ik'}]}.$$

(3)

Locally private MCMC for Poisson factorization does not permit us to directly observe the count y_i. Instead, we observe a noised version of it $\tilde{y}_i = \tau_i + y_i$ where $\tau_i \sim 2\text{Geo}(\alpha_i)$ is a two-sided geometric random variable generated based on privacy parameter $\alpha_i \in [0, 1]$. [20] show that such perturbation mechanism satisfies $(N, N \ln(1/\epsilon))$-limited-precision local privacy. In this case proceeds by treating the true data y_i itself as a latent variable and re-sampling it from its complete conditional. To do this, one can augment standard Poisson factorization with a set of auxiliary variables for each data point $A_i = \{\lambda_i^{(+)}, \lambda_i^{(-)}, g_i^{(+)}, g_i^{(-)}, z_i^{(+)}, m_i\}$, related to a reinterpretation of the generative process for two-sided geometric noise as given in Appendix A. The key feature of this auxiliary variable scheme is the two-step sampling procedure of a value of the sensitive count y_i as a latent variable:

$$(m_i | -) \sim \text{Bessel} \left(|\tilde{y}_i|, 2 \sqrt{\lambda_i^{(-)}(\lambda_i^{(+)} + \mu_i)} \right)$$

(4)

$$(\tilde{y}_i^{(+)} | -) \sim \text{Multinom} \left(\tilde{y}_i^{(+)}, (\lambda_i^{(+)} + \mu_{i1}, \ldots, \mu_{iK}) \right)$$

(5)

Here, $\tilde{y}_i^{(+)}$ is defined deterministically as the maximum of m_i and $m_i + \tilde{y}_i^{(\pm)}$. The noisy observation $\tilde{y}_i^{(\pm)}$ and $\tilde{y}_i^{(+)} = (\tilde{y}_i^{(+)}, y_{i1}, \ldots, y_{iK})$ is a vector of latent sub-counts that sum to $\tilde{y}_i^{(+)}$: the first of these sub-counts $g_i^{(+)}$ represents the positive noise added to the sensitive data $y_i = \sum_{k=1}^K y_{ik}$, while the latter sub-counts constitute the vector of sub-counts corresponding to each latent component in non-private Poisson factorization (see Equation 1).

3 **Locally private variational inference for Poisson factorization**

In this section we describe the challenges to deriving CAVI for locally private Poisson factorization and sketch our solutions. In CAVI, we look to impose a factorized variational distribution over all latent variables which, in this case, includes the set of auxiliary variables A_i for each data point mentioned in the last section. The main technical challenge lies in finding a variational families for m_i and $\tilde{y}_i^{(+)}$ that yield a good approximation and closed-form messages to the other factors. Towards this goal, we prove the following two related propositions:

Proposition 1. (Proven in Appendix B) The Bessel distribution $m_i \sim \text{Bessel}(\nu, a)$ for fixed ν is an exponential family with sufficient statistic $T_\nu(m) = 2m + \nu$, natural parameter $\eta_\nu(m) = \log(\frac{m}{\nu})$, and base measure $h_\nu(m) = \frac{1}{m! \{m + \nu - 1\}!}$.

Proposition 2. The optimal variational distribution for m_i is a Bessel distribution:

$$Q^*(m_i) = \text{Bessel} \left(m_i; |\tilde{y}_i^{(\pm)}|, 2 \sqrt{\mathbf{G}_Q[\lambda_i^{(-)}]} \mathbf{G}_Q[\lambda_i^{(+)} + \mu_i] \right).$$

(6)

1 A local randomizer R satisfies (N, ϵ)-limited-precision local privacy if for any two observations $y, y' \in \mathbb{N}^d$ such that $\|y - y'\|_1 \leq N$, R satisfies $\Pr[R(y) = r] \leq \exp(\epsilon) \Pr[R(y') = r]$ for any r in the output range.
Unfortunately, selecting the Bessel distribution as the family for $Q(m_i)$ prevents a closed-form solution to $Q^*(\tilde{y}_i^{(+)})$: specifically, it results in the expression of the integer number of samples in a binomial distribution downstream in the generative process as a non-integer expectation of m_i. To overcome this, we instead select the variational family for $Q(m_i)$ to be a Dirac delta function at the mode of the optimal family (in Equation 6):

$$Q(m_i) = \delta[m_i = \text{mode}(Q^*(m_i))]$$ (7)

This choice allows a closed-form solution for the optimal variational distribution over $\tilde{y}_i^{(+)}:$

$$Q^*(\tilde{y}_i^{(+)}) = \text{Multinom}(\tilde{y}_i^{(+)}, \mathbb{E}_{Q} \left[\lambda_i^{(+)}, \mathcal{G}_Q [\lambda_i], \mathcal{G}_Q [\mu_{i1}], \ldots, \mathcal{G}_Q [\mu_{iK}] \right])$$ (8)

Furthermore, we can prove that this degenerate choice variational family is in fact nearly optimal in practice. Since the other factors depend on $Q(m_i)$ only through the message $\mathbb{E}_{Q} [m_i]$, we need only show that the difference between the optimal message and ours is small. Under the optimal $Q^*(m_i)$, this message equals the expected value under the Bessel distribution in Equation 6 while in our solution, it equals the mode of that same distribution. To bound the error between these two, we prove the following proposition:

Proposition 3. (Proven in Appendix C) The absolute difference between the mean and mode of the Bessel distribution is bounded by 1:

$$|\mathbb{E}_{\text{Bessel}(m;\nu,a)}[m] - \text{mode}(\text{Bessel}(m;\nu,a))| \leq 1.$$

Equations [6] and [8] provide solutions to the main challenge of deriving a tractable and nearly optimal variational family. The closed-form solutions to the optimal variational families for all other auxiliary variables are more straightforward to derive and we give them in the supplementary material (see Appendix [D]). There is one final challenge: the log term inside the expectation $\mathcal{G}_Q [\ln \lambda_i^{(+)}, \mu_i] = e^{\mathbb{E}_{Q} [\ln \lambda_i^{(+)}, \mu_i]}$ in Equation [6] prevents the derivation of a closed form. However, we can derive a first-order Taylor approximation via the delta method [24].

4 Discussion

We present a new CAVI algorithm for inference of Bayesian Poisson factorization models under local privacy. Our method relies on two key theoretical insights about the Bessel distribution: first, that with fixed ν, it belongs to the exponential family, and second, that its mode is an integer neighbor of its mean. Using these, we implement a tool with significant performance improvements over even an optimized version of the prior MCMC algorithm. On a synthetic test case of inferring a rank-50 factorization of an 1000 by 1000 data observation matrix, we obtain a 20x speedup in model inference. We detail the construction of this synthetic performance experiment in Appendix [E].

Acknowledgments

We would like to thank David Mimno, and collaborators at Microsoft Research and in the Cornell Natural Language Processing group for their support and feedback. We would also like to thank the reviewers for their helpful comments.

References

We can equivalently first generate the sums of Poissons and then thin them using multinomial and binomial PMFs as unnormalized vectors. Also note that $\mu_i = \sum_k \prod_d \theta_{i,d,k}$, where i_d is the index into the dth

\[\sum_i \lambda_i \theta_{i,d,k} \]
We can equivalently first generate the difference \(\tilde{y}_i^{(\pm)} \) and minimum \(m_i \) as Skellam and Bessel random variables. Conditioned on these variables, we can then compute \(y_i^{(\pm)} \) using binomial and multinomial draws:

\[
P \left(g_i^{(+)}, g_i^{(-)}, (y_{ik})_{k=1}^K, y_i, \tilde{y}_i^{(\pm)}, \tilde{y}_i^{(\pm)}, m_i \right)
\]

\[
= \text{Skel} \left(\tilde{y}_i^{(\pm)}; \lambda_i^{(+)} + \mu_i, \lambda_i^{(-)} \right) \text{Bes} \left(m_i; |\tilde{y}_i^{(\pm)}|, 2\sqrt{\lambda_i^{(-)}(\lambda_i^{(+)}) + \mu_i} \right) \\
\mathbb{I} \left(\tilde{y}_i^{(+)} = m_i \right) \mathbb{I} \left(\tilde{y}_i^{(-)} = m_i \right) \mathbb{I} \left(\tilde{y}_i^{(+) -} = \tilde{y}_i^{(-)} \right) \\
\text{Binom} \left((y_{ik}^{(+)}); y_i^{(+)}, (\mu_i, \lambda_i^{(+)}) \right) \text{Mult} \left((y_{ik}^{(-)}); y_i^{(-)}, (\prod_{d} \theta_{i_{a,d}^{(+)}})^K \right).
\]

(11)

We can equivalently first generate the difference \(\tilde{y}_i^{(\pm)} \) and minimum \(m_i \) as Skellam and Bessel random variables. Conditioned on these variables, we can then compute \(y_i^{(\pm)} \) using binomial and multinomial draws:

\[
P \left(g_i^{(+)}, g_i^{(-)}, (y_{ik})_{k=1}^K, y_i, \tilde{y}_i^{(\pm)}, \tilde{y}_i^{(\pm)}, m_i \right)
\]

\[
= \text{Poisson} \left(g_i^{(-)}; \lambda_i^{(-)} \right) \text{Poisson} \left(g_i^{(+)}; \lambda_i^{(+)}, \mu_i \right) \\
\mathbb{I} \left(\tilde{y}_i^{(+) -} = \tilde{y}_i^{(-)} \right) \\
\text{Binom} \left((y_{ik}^{(+)}); y_i^{(+)}, (\mu_i, \lambda_i^{(+)}) \right) \text{Mult} \left((y_{ik}^{(-)}); y_i^{(-)}, (\prod_{d} \theta_{i_{a,d}^{(+)}})^K \right).
\]

(12)

It is this last factorization that enables us to derive the variational distribution.

B The Bessel distribution as exponential family

Theorem 1 The Bessel distribution \(m \sim \text{Bes}(\nu, a) \) for fixed \(\nu \) is an exponential family with sufficient statistic \(T_{\nu}(m) = 2m + \nu \), natural parameter \(\eta_{\nu}(m) = \log \left(\frac{a}{2} \right) \), and base measure \(h_{\nu}(m) = \frac{1}{m! (m + \nu + 1)} \).

Proof. The Bessel distribution \([28]\) is a two-parameter distribution over the non-negative integers:

\[
f(n; a, \nu) = \frac{\left(\frac{a}{2} \right)^{2n + \nu}}{n! \Gamma(n + \nu + 1) I_{\nu}(a)},
\]

where the normalizing constant \(I_{\nu}(a) \) is a modified Bessel function of the first kind—i.e.,

\[
I_{\nu}(a) = \sum_{n=0}^{\infty} \frac{\left(\frac{a}{2} \right)^{2n + \nu}}{n! \Gamma(n + \nu + 1)}.
\]

(14)

For fixed and known \(\nu \), we can rewrite the Bessel PMF as

\[
f(n; a, \nu) = \frac{1}{n! \Gamma(n + \nu + 1)} \exp \left(\left(2n + \nu \right) \log \left(\frac{a}{2} \right) - \log I_{\nu}(a) \right).
\]

(15)

We can then define the following functions:

\[
h_{\nu}(n) = \frac{1}{n! \Gamma(n + \nu + 1)} \\
T_{\nu}(n) = 2n + \nu \\
\eta_{\nu}(a) = \log \left(\frac{a}{2} \right) \\
A_{\nu}(a) = \log I_{\nu}(a).
\]

(16)-(19)

Finally, we can rewrite the Bessel PMF in the exponential-family form:

\[
f(n; a, \nu) = h_{\nu}(n) \exp \left(\eta_{\nu}(a) \cdot T_{\nu}(n) - A_{\nu}(a) \right).
\]

(20)
C The mode and mean of the Bessel distribution

Theorem 2 The mode of a Bessel distribution for parameters \(a, \nu\) can be a constant-bounded approximation of the mean:

\[
|E_{\text{Bessel}}(m; \nu, a)[m] - \text{mode}(\text{Bessel} (m; a, \nu))| \leq 1.
\]

The intuitive meaning of this is that the mode of the Bessel distribution is guaranteed to be one of the two integers closest to the mean of the distribution. Given one of these two integers will always be the best integer approximation of this number, we can also say that there cannot exist an integer approximation of the mean of the Bessel that is strictly between the mode and the mean of the Bessel distribution.

Proof. A Bessel distribution takes two arguments, which we refer to as its order, \(\nu\) and coordinate, \(a\). The distribution is defined as:

\[
p(x = n|x \sim \text{Bessel} (\nu, a)) = \frac{1}{I_\nu(a)n!\Gamma(n + \nu + 1)} \left(\frac{a}{\sqrt{2}}\right)^{2n+\nu},
\]

where \(I_\nu(a)\) is a modified Bessel function of the first kind. The arithmetic mean of the distribution is

\[
E_{\text{Bessel}}(m; \nu, a)[m] = \frac{a}{2}R_\nu(a),
\]

with \(R_\nu(a)\) referring to the ratio of two Bessel functions:

\[
\frac{I_{\nu+1}(a)}{I_\nu(a)}.
\]

The Bessel distribution has one or two neighboring integer modes. The mode can be computed directly from the parameters of the distribution without Bessel functions:

\[
\text{mode}(\text{Bessel} (\nu, a)) = \left\lfloor \frac{\sqrt{a^2 + \nu^2} - \nu}{2} \right\rfloor.
\]

Unlike the mean, which can take arbitrary non-negative real values, the mode is guaranteed by the floor function to be a non-negative integer.

We use the following bound on the mean of a Bessel ratio from (author?) [11]:

\[
\frac{a}{\nu + 1 + \sqrt{a^2 + (\nu + 1)^2}} \leq R_\nu(a) \leq \frac{a}{\nu + \sqrt{a^2 + \nu^2}}.
\]

(21)

We multiply through by \(\frac{a}{2}\) to bound the mean of the Bessel distribution:

\[
\frac{a^2}{2(\nu + 1 + \sqrt{a^2 + (\nu + 1)^2})} \leq E_{\text{Bessel}}(m; \nu, a)[m] \leq \frac{a^2}{2(\nu + \sqrt{a^2 + \nu^2})}.
\]

(22)

We can rewrite these bounds using a difference-of-squares:

\[
\frac{a^2}{2(\nu + \sqrt{a^2 + \nu^2})} = \frac{a^2(\sqrt{a^2 + \nu^2} - \nu)}{2(\nu + \sqrt{a^2 + \nu^2})(\sqrt{a^2 + \nu^2} - \nu)} = \frac{a^2(\sqrt{a^2 + \nu^2} - \nu)}{2a^2 + \nu^2 - \nu^2} = \frac{\sqrt{a^2 + \nu^2} - \nu}{2}.
\]
This upper bound coincides with the unrounded formulation of the mode. Because the mode is the floor of this quantity, we know it is less than or equal to this upper bound with a difference of less than 1.

We can convert the lower bound in the same way:

\[
\frac{a^2}{2((\nu + 1) + \sqrt{a^2 + (\nu + 1)^2})} = \frac{\sqrt{a^2 + (\nu + 1)^2} - (\nu + 1)}{2}.
\]

We are interested in bounding the difference between the upper and lower bounds:

\[
\frac{\sqrt{a^2 + \nu^2} - \nu}{2} - \frac{\sqrt{a^2 + (\nu + 1)^2} - (\nu + 1)}{2} = \frac{\sqrt{a^2 + \nu^2} + 1 - \sqrt{a^2 + (\nu + 1)^2}}{2}.
\] (23)

Knowing that \(\nu\) is positive, we can state that \(\sqrt{a^2 + \nu^2} < \sqrt{a^2 + (\nu + 1)^2}\), or \(\sqrt{a^2 + (\nu + 1)^2} - \sqrt{a^2 + \nu^2} > 0\). Based on the upper slice of the triangle in the figure below, the triangle inequality also gives us another bound, that \(\sqrt{a^2 + \nu^2} + 1 > \sqrt{a^2 + (\nu + 1)^2}\), or \(1 > \sqrt{a^2 + (\nu + 1)^2} - \sqrt{a^2 + \nu^2}\).

Together, these imply that

\[0 \leq \sqrt{a^2 + \nu^2} + 1 - \sqrt{a^2 + (\nu + 1)^2} \leq 1.\]

Substituting this in to our computation of the distance between the upper and lower bounds of the mean, we find that

\[\frac{\sqrt{a^2 + \nu^2} + 1 - \sqrt{a^2 + (\nu + 1)^2}^2}{2} < \frac{1}{2},\] (24)

or that the inferred upper and lower bounds for the mean of the Bessel distribution produce an interval no larger than \(\frac{1}{2}\). The upper bound of this \(\frac{1}{2}\) interval is the same as the upper bound of the length-1 open interval of the mode of the Bessel. In the most extreme case when the mode is at the bottom end of its range and the mean is at the top, we have

\[\mathbb{E}_{\text{Bessel}(m;\nu,a)}[m] - \text{mode(Bessel } (\nu, a) < 1.\]

In the opposite case, we have

\[\text{mode(Bessel } (\nu, a)) - \mathbb{E}_{\text{Bessel}(m;\nu,a)}[m] \leq \frac{1}{2} < 1.\]

\[\square\]

D Deriving the CAVI updates for the variational distribution

Recall that the observed data consists of the difference variables \(\tilde{y}_i^{(\pm)}\).

\[
Q\left(m_i, \tilde{y}_i^{(\pm)}, g_i^{(\pm)}, g_i^{(-)}, y_i, (y_k)_{k=1}^K\right) \propto G_Q\left[P(\tilde{y}_i^{(\pm)}, m_i, \tilde{y}_i^{(\pm)}, g_i^{(\pm)}, g_i^{(-)}, y_i, (y_k)_{k=1}^K \mid -)\right].\] (25)
Because the likelihood (i.e., the Skellam term) in equation 12 does not depend on any of these latent variables, it disappears entirely. We can then rewrite the right-hand side of equation 25 as:

\[
G_Q \left[P(m, y_i^{(+)}, g_i, y_i, (y_{ik})_{k=1}^K | y_i^{(\pm)}) \right] = G_Q \left[\text{Bes} \left(m_i; |y_i^{(\pm)}|, 2 \sqrt{\lambda_i^{(-)}(\lambda_i^{(+)}) + \mu_i} \right) \right]
\]

\[
\mathbb{I} \left(\frac{y_i^{(+)}}{m_i} = m_i \right)^{1(\frac{y_i^{(+)}}{m_i} \leq 0)} \mathbb{I} \left(\frac{g_i^{(-)} - g_i}{m_i} = m_i \right)^{1(\frac{g_i^{(-)} - g_i}{m_i} > 0)} \mathbb{I} \left(\frac{y_i^{(+)}}{m_i} = y_i^{(+) - g_i^{(-)}} \right)
\]

\[
G_Q \left[\text{Binom} \left((y_{ik}, g_i^{(+)}) \right), \left(\mu_i, \lambda_i^{(+)}, \left(\mu_i, \lambda_i^{(+)}, \left((y_{ik})_{k=1}^K \right) \right) \right) \right].
\] (26)

Theorem 6.1 states that the Bessel distribution for fixed first parameter is an exponential family. We can therefore use standard results to push in the geometric expectations:

\[
G_Q \left[P(m, y_i^{(+)}, g_i, y_i, (y_{ik})_{k=1}^K | y_i^{(\pm)}) \right] = \text{Bes} \left(m_i; |y_i^{(\pm)}|, 2 \sqrt{G_Q \left[\lambda_i^{(-)} \right] \left(G_Q \left[\lambda_i^{(+) + \mu_i} \right) \right]} \right)
\]

\[
\mathbb{I} \left(\frac{y_i^{(+)}}{m_i} = m_i \right)^{1(\frac{y_i^{(+)}}{m_i} \leq 0)} \mathbb{I} \left(\frac{g_i^{(-)} - g_i}{m_i} = m_i \right)^{1(\frac{g_i^{(-)} - g_i}{m_i} > 0)} \mathbb{I} \left(\frac{y_i^{(+)}}{m_i} = y_i^{(+) - g_i^{(-)}} \right)
\]

\[
G_Q \left[\text{Binom} \left((y_{ik}, g_i^{(+)}) \right), \left(G_Q \left[y_i \right], \left(G_Q \left[\lambda_i^{(+) + \mu_i} \right) \right] \right) \right] \text{ Mult} \left((y_{ik})_{k=1}^K \right)
\] (27)

There are two expectations that do not have an analytic form:

\[
G_Q \left[\lambda_i^{(+) + \mu_i} \right] = \exp \left(\mathbb{E}_Q \left[\ln \left(\lambda_i^{(+) + \sum_{k=1}^K \prod_{d=1}^i \theta_{d,i,k} \right) \right] \right)
\] (28)

and

\[
G_Q \left[\mu_i \right] = \exp \left(\mathbb{E}_Q \left[\ln \left(\sum_{k=1}^K \prod_{d=1}^i \theta_{d,i,k} \right) \right] \right);
\] (29)

however, both can be very closely approximated using the delta method [24], which has been previously used in variational inference schemes to approximate intractable expectations [5 25]. In particular, for some variable \(Y = f(X) \), expectation \(\mathbb{E}[Y] \) is approximately:

\[
\mathbb{E}[Y] = \mathbb{E}[f(X)] \approx f(\mathbb{E}[X]) + \frac{1}{2} f''(\mathbb{E}[X]) \mathbb{V}[X].
\] (30)

In our case, we can consider the two-dimensional Poisson matrix factorization case where \(i \) are represented by row \(d \) and column \(v \). We therefore have

\[
\mathbb{E}_Q \left[\ln \mu_{dv} \right] = \mathbb{E}_Q \left[\ln \left(\sum_{k=1}^K \theta_{dk} \phi_{kv} \right) \right] \approx \ln \left(\mathbb{E}_Q \left[\sum_{k=1}^K \theta_{dk} \phi_{kv} \right] \right) - \frac{\mathbb{V}_Q \left[\sum_{k=1}^K \theta_{dk} \phi_{kv} \right]}{2 \left(\mathbb{E}_Q \left[\sum_{k=1}^K \theta_{dk} \phi_{kv} \right] \right)^2}
\]

\[
= \ln \left(\sum_{k=1}^K \mathbb{E}_Q \left[\theta_{dk} \right] \mathbb{E}_Q \left[\phi_{kv} \right] \right) - \frac{\sum_{k=1}^K \mathbb{V}_Q \left[\theta_{dk} \phi_{kv} \right]}{2 \left(\sum_{k=1}^K \mathbb{E}_Q \left[\theta_{dk} \right] \mathbb{E}_Q \left[\phi_{kv} \right] \right)^2}.
\] (31)

Finally, because \(\theta_{dk} \) and \(\phi_{kv} \) are independent, we have

\[
\mathbb{V}_Q \left[\theta_{dk} \phi_{kv} \right] = \mathbb{V}_Q \left[\theta_{dk} \right] \mathbb{V}_Q \left[\phi_{kv} \right] + \mathbb{V}_Q \left[\theta_{dk} \right] \left(\mathbb{E}_Q \left[\phi_{kv} \right] \right)^2 + \mathbb{V}_Q \left[\phi_{kv} \right] \left(\mathbb{E}_Q \left[\theta_{dk} \right] \right)^2.
\] (33)
In order to test this result, we generated synthetic count data using a Poisson matrix factorization formulation analogous to the LDA topic model \[4\] with \(D\) documents, \(V\) unique terms in a document vocabulary, and \(K\) latent topics. We first used a Gamma prior to generate two matrices of latent parameters, \(\theta\) of dimension \(D \times K\) and \(\phi\) of dimension \(K \times V\). We then compute the product of these, \(\theta \phi = Y\), as the Poisson prior of our data generation process. Finally, we add two-sided geometric noise scaled to \(\epsilon/N = 1\), a ratio that applies when the privacy budget \(\epsilon\) and the maximum allowed difference between documents \(N\) are equal (e.g., a privacy budget of 2 to privatize 2-word spans). We then test our inference procedure to see how closely it estimates the true parameters of the original model. We find that our model successfully converges to within a reasonable estimate of the true model parameters given the data, as demonstrated in a small example in Figure 1.

Using a larger example of a synthetic 1000-by-1000 matrix of count observations, we test the performance of this algorithm as compared to the performance using inference with MCMC \[20\]. We observe that a single-threaded version of the code from the MCMC implementation, even with optimizations such as reducing the frequency of parameter resampling for the noise distributions, each iteration of inference takes approximately 0.8 seconds. Using 5000 iterations of burnin and 2500 to collect samples, this takes a combined 1.67 hours to infer, with a final mean average error (MAE) of 0.36. In contrast, our variational inference model takes approximately 2.8 seconds per iteration, and typically requires 100 iterations to converge, resulting in a combined 5 minutes of inference to reach error of 0.52.