Secure Two-Party Distribution Testing

Alexandr Andoni Tal Malkin Negev Shekel Nosatzki

Department of Computer Science
Columbia University
Privacy Preserving Machine Learning 2018
December 2018
Discrete Distribution Testing

Test distributions for statistical properties using sample access.

Closeness Testing

- 2 distributions: a, b.
- Alphabet: $[n]$.
- Inputs: t samples from each of a and b.

Does $a = b$ or $\|a - b\|_1 > \epsilon$?

Typical Question: What is t? (sample complexity)

$t = \Theta_\epsilon(n^{2/3})$ [BFR+ 00, Val11, BFR+ 13, CDVV14, DK16, DGPP16]

Many variants:
- Instance-Optimal [ADJ+ 11, ADJ+ 12, DK16].
- Unequal sample sizes [AJOS14, BV15, DK16].
- Quantum [BHH11].
Discrete Distribution Testing

Test distributions for statistical properties using sample access.

Closeness Testing

- 2 distributions: a, b.
- Alphabet: $[n]$.
- Inputs: t samples from each of a and b.

\[\alpha_1 \ldots \alpha_t \sim a \]
\[\beta_1 \ldots \beta_t \sim b \]

Does $a = b$ or $\|a - b\|_1 > \epsilon$?

Typical Question: What is t? (sample complexity)

\[t = \Theta_\epsilon(n^{2/3}) \]
[BFR+ 00, Val11, BFR+ 13, CDVV14, DK16, DGPP16]

Many variants:
- Instance-Optimal [ADJ+ 11, ADJ+ 12, DK16].
- Unequal sample sizes [AJOS14, BV15, DK16].
- Quantum [BHH11].
Discrete Distribution Testing

Test distributions for statistical properties using sample access.

Closeness Testing

- 2 distributions: a, b.
- Alphabet: $[n]$.
- Inputs: t samples from each of a and b.

Does $a = b$ or $\|a - b\|_1 > \epsilon$?

Typical Question: What is t? (sample complexity)

$$t = \Theta_\epsilon (n^{2/3})$$

Many variants:

- Instance-Optimal [ADJ+ 11, ADJ+ 12, DK16].
- Unequal sample sizes [AJOS14, BV15, DK16].
- Quantum [BHH11].
This Talk: Two Party Closeness Testing

Main Questions:
- Communication Complexity
- Security.
This Talk: Two Party Closeness Testing

Main Questions:

- Communication Complexity
- Security.
Two Party Closeness Testing: Communication

Testing Closeness - Known Reductions [CDVV14,DK16]

\[d(A, B) = \frac{1}{t} \sqrt{\sum_{i \in [n]} (A_i - B_i)^2 - 2t} \]

- Tool: \(\ell_1 \) to \(\ell_2 \) reduction.
- Compute count-distance for 2 sets of \(t \) samples \(A \sim a, B \sim b \).
- Compare to some threshold \(\tau \) to estimate if they originated from SAME or \(\epsilon \)-FAR distributions.
- Reductions use “splitting” / “flattening” techniques.
- This results in adjusted alphabet, that depends on Bob’s inputs.
Improving communication (still insecurely)

- Alice and Bob estimate $\hat{d}(A, B)$ by sketching $\|A - B\|_2^2$ approximation and comparing to threshold τ.

- With more samples, can tolerate cruder approximation, gaining communication efficiency.

Communication Complexity: $\tilde{\Theta}_\epsilon(n^2/t^2)$

Examples:
- With $t = \Theta_\epsilon(n^{2/3})$, need to communicate near-all of them.
- With linear sample size, we allow $\tilde{O}_\epsilon(1)$ communication.
Improving communication (still insecurely)

Alice and Bob estimate \(\hat{d}(A, B) \) by sketching \(\|A - B\|_2^2 \) approximation and comparing to threshold \(\tau \).

- With more samples, can tolerate cruder approximation, gaining communication efficiency.

Communication Complexity: \(\tilde{\Theta}_\epsilon(n^2/t^2) \)

Examples:
- With \(t = \Theta_\epsilon(n^{2/3}) \), need to communicate near-all of them.
- With linear sample size, we allow \(\tilde{O}_\epsilon(1) \) communication.
Improving communication (still insecurely)

Alice and Bob estimate $\hat{d}(A, B)$ by sketching $\|A - B\|^2_2$ approximation and comparing to threshold τ.

With more samples, can tolerate cruder approximation, gaining communication efficiency.

Communication Complexity: $\tilde{\Theta}_\epsilon(n^2/t^2)$

Examples:
- With $t = \Theta_\epsilon(n^{2/3})$, need to communicate near-all of them.
- With linear sample size, we allow $\tilde{O}_\epsilon(1)$ communication.
Adding Security

- Applying **generic techniques** for secure computation is **prohibitive** in our context, as we care for **sublinear** communication.

- $\|A - B\|_2^2$ can be estimated securely and efficiently using a secure (garbled) circuit with **external memory** [IW06].

- But reductions estimators use an adjusted alphabet that “depend on Bob’s samples”.

 Goal: Securely estimating $\|A_S - B_S\|_2^2$
 (where A_S, B_S represent samples over the adjusted alphabet)

- We need a secure way for Alice and Bob to agree on an alphabet.

Observation: Most letters multiplicity is not affected by alphabet change.
Adding Security

- Applying **generic techniques** for secure computation is **prohibitive** in our context, as we care for **sublinear communication**.

- $\| A - B \|_2^2$ can be estimated securely and efficiently using a secure (garbled) circuit with **external memory** [IW06].

- But reductions estimators use an adjusted alphabet that “depend on Bob’s samples”.

 Goal: Securely estimating $\| A_S - B_S \|_2^2$
 (where A_S, B_S represent samples over the adjusted alphabet)

- We need a secure way for Alice and Bob to agree on an alphabet.

Observation: Most letters multiplicity is not affected by alphabet change.
Adding Security

- Applying **generic techniques** for secure computation is **prohibitive** in our context, as we care for **sublinear communication**.

- $\|A - B\|_2^2$ can be estimated securely and efficiently using a secure (garbled) circuit with **external memory** [IW06].

- But reductions estimators use an adjusted alphabet that “depend on Bob’s samples”.

 Goal: Securely estimating $\|A_S - B_S\|_2^2$
 (where A_S, B_S represent samples over the adjusted alphabet)

- We need a secure way for Alice and Bob to agree on an alphabet.

Observation: Most letters multiplicity is not affected by alphabet change.
Adding Security

- Applying **generic techniques** for secure computation is **prohibitive** in our context, as we care for **sublinear communication**.

- $\|A - B\|_2^2$ can be estimated securely and efficiently using a secure (garbled) circuit with **external memory** [IW06].

- But reductions estimators use an adjusted alphabet that “depend on Bob’s samples”.

 Goal: Securely estimating $\|A_S - B_S\|_2^2$

 (where A_S, B_S represent samples over the adjusted alphabet)

- We need a secure way for Alice and Bob to agree on an alphabet.

Observation: Most letters multiplicity is not affected by alphabet change.
Adding Security

- Applying **generic techniques** for secure computation is **prohibitive** in our context, as we care for **sublinear communication**.
- \(\|A - B\|_2^2 \) can be estimated securely and efficiently using a secure (garbled) circuit with **external memory** [IW06].
- But reductions estimators use an adjusted alphabet that “depend on Bob’s samples”.

Goal: Securely estimating \(\|A_S - B_S\|_2^2 \)

(where \(A_S, B_S \) represent samples over the adjusted alphabet)

- We need a secure way for Alice and Bob to agree on an alphabet.

Observation: Most letters multiplicity is not affected by alphabet change.
Solution Overview

Goal: Securely estimating $\|A_S - B_S\|_2^2$

(where A_S, B_S represent samples over the adjusted alphabet)

- Secure circuit estimates some distance of the original alphabet.
- Such estimation is then adjusted by the circuit to account for the adjusted alphabet and “heavy” letters.
- Offline preparation of (polynomial) external memory enable efficiency and correctness.
Solution Overview

Goal: Securely estimating $\|A_S - B_S\|_2^2$

(where A_S, B_S represent samples over the adjusted alphabet)

- Secure circuit estimates some distance of the original alphabet.
- Such estimation is then adjusted by the circuit to account for the adjusted alphabet and “heavy” letters.
- Offline preparation of (polynomial) external memory enable efficiency and correctness.
Solution Overview

Goal: Securely estimating $\|A_S - B_S\|_2^2$

(where A_S, B_S represent samples over the adjusted alphabet)

- Secure circuit estimates some distance of the original alphabet.
- Such estimation is then adjusted by the circuit to account for the adjusted alphabet and “heavy” letters.
- Offline preparation of (polynomial) external memory enable efficiency and correctness.
Solution Overview

Goal: Securely estimating \(\|A_S - B_S\|_2^2 \)

(where \(A_S, B_S \) represent samples over the adjusted alphabet)

- Secure circuit estimates some distance of the original alphabet.
- Such estimation is then adjusted by the circuit to account for the adjusted alphabet and “heavy” letters.
- Offline preparation of (polynomial) external memory enable efficiency and correctness.
Secure Closeness: Methods

1. **Adapted Reduction**: adjust alphabet using split set S sampled from both a and b. (avoiding insecure part in reduction)

2. **Capped Samples**: estimate capped sample distance $\|A' - B'\|_2^2$. (which is of a similar magnitude as $\|A_S - B_S\|_2^2$, over the adjusted alphabet)

<table>
<thead>
<tr>
<th>Split Samples:</th>
<th>Recasted samples randomly placed in 1-of-s bins, based on sample multiplicity in multi-set S:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \begin{bmatrix} 6 \ 0 \ 7 \ 1 \end{bmatrix}$</td>
<td>$A_S = \begin{bmatrix} 6 \ 0 \ 2 \ 4 \ 1 \ 0 \end{bmatrix}$</td>
</tr>
<tr>
<td>$S = {3, 3, 4}$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capped Samples:</th>
<th>Count samples up to L.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A = \begin{bmatrix} 6 \ 0 \ 7 \ 1 \end{bmatrix}$</td>
<td>$A' = \begin{bmatrix} 5 \ 0 \ 5 \ 1 \end{bmatrix}$</td>
</tr>
<tr>
<td>$L = 5$</td>
<td></td>
</tr>
</tbody>
</table>
Secure Closeness: Methods

1. **Adapted Reduction**: adjust alphabet using split set S sampled from both a and b. (avoiding insecure part in reduction)

2. **Capped Samples**: estimate capped sample distance $\|A' - B'\|_2^2$. (which is of a similar magnitude as $\|A_S - B_S\|_2^2$, over the adjusted alphabet)

Split Samples: Recasted samples randomly placed in 1-of-s bins, based on sample multiplicity in multi-set S

\[
A = \begin{bmatrix} 6 \\ 0 \\ 7 \\ 1 \end{bmatrix} \quad \rightarrow \quad A_S = \begin{bmatrix} 6 \\ 0 \\ 2 \\ 4 \\ 1 \end{bmatrix}
\]

$S = \{3, 3, 4\}$

Capped Samples: Count samples up to L.

\[
A = \begin{bmatrix} 6 \\ 0 \\ 7 \\ 1 \end{bmatrix} \quad \rightarrow \quad A' = \begin{bmatrix} 5 \\ 0 \\ 5 \\ 1 \end{bmatrix}
\]

$L = 5$
Secure Closeness: Methods (cont)

3. **Adjust for “heavy letters”:** compute
 \[\| A' - B' \|_2^2 - \| A_S - B_S \|_2^2 \]
 exactly.
 (function of a small number of letters. can be computed over a small-sized circuit)

Split Samples: Recasted samples randomly placed in 1-of-s bins, based on sample multiplicity in multi-set \(S \)

\[
A = \begin{bmatrix} 6 \\ 0 \\ 7 \\ 1 \end{bmatrix} \quad \rightarrow \quad A_S = \begin{bmatrix} 6 & 0 & 2 & 4 & 1 \\ 0 & 1 \end{bmatrix}
\]

\(S = \{3, 3, 4\} \)

Capped Samples: Count samples up to \(L \).

\[
A = \begin{bmatrix} 6 \\ 0 \\ 7 \\ 1 \end{bmatrix} \quad \rightarrow \quad A' = \begin{bmatrix} 5 \\ 0 \\ 5 \\ 1 \end{bmatrix}
\]

\(L = 5 \)
Secure Circuit Sketch

1. Sample multiset S from Alice, Bob.
2. Approximate by sampling from external memory $\|A' - B'\|_2^2$.
3. Compute $\|A_S - B_S\|_2^2 - \|A' - B'\|_2^2$
4. Output “SAME” iff $(2) + (3) \leq \tau$

Entire computation is over a secure circuit. Simulating the output provides security by composition theorems.

Circuit is of size $\tilde{O}_\epsilon(poly(k) \cdot n^2/t^2)$
Communication overhead is a function of security parameter k: independent of n (assuming PRG/OT).
Secure Circuit Sketch

1. Sample multiset S from Alice, Bob.
2. Approximate by sampling from external memory $\|A' - B'\|_2^2$.
3. Compute $\|A_S - B_S\|_2^2 - \|A' - B'\|_2^2$
4. Output “SAME” iff $(2) + (3) \leq \tau$

Entire computation is over a secure circuit. Simulating the output provides security by composition theorems.

Circuit is of size $\tilde{O}_\epsilon(poly(k) \cdot n^2/t^2)$

Communication overhead is a function of security parameter k independent of n (assuming PRG/OT).
1. Sample multiset S from Alice, Bob.
2. Approximate by sampling from external memory $\|A' - B'\|^2_2$.
3. Compute $\|A_S - B_S\|^2_2 - \|A' - B'\|^2_2$
4. Output “SAME” iff $(2) + (3) \leq \tau$

Entire computation is over a secure circuit. Simulating the output provides security by composition theorems.

Circuit is of size $\tilde{O}_\epsilon(poly(k) \cdot n^2/t^2)$

Communication overhead is a function of security parameter k independent of n (assuming PRG/OT).
Conclusions

- Two Party Closeness Testing can be computed securely with $\tilde{\Theta}_{\epsilon,k}(n^2/t^2)$ communication under standard cryptographic assumptions.
- We also provide (secure) Two Party Independence Testing protocols using $\tilde{\Theta}_{\epsilon,k}(n^2m/t^2 + nm/t + \sqrt{m})$ communication.
- We show tightness for Closeness Testing, and for some of the parameter regimes of Independence Testing.
- More Samples \Leftrightarrow Less Communication.

Thank you!

Questions?
Conclusions

- **Two Party Closeness Testing** can be computed securely with $\tilde{\Theta}_{\epsilon,k}(n^2/t^2)$ communication under standard cryptographic assumptions.
- We also provide (secure) **Two Party Independence Testing** protocols using $\tilde{\Theta}_{\epsilon,k}(n^2m/t^2 + nm/t + \sqrt{m})$ communication.
- We show **tightness** for Closeness Testing, and for some of the parameter regimes of Independence Testing.
- **More Samples \Leftrightarrow Less Communication.**

Thank you!

Questions?