
CHET: Compiler and Runtime for Homomorphic
Evaluation of Tensor Programs

Roshan Dathathri*, Olli Saarikivi†, Hao Chen†, Kim Laine†, Kristin Lauter†, Saeed Maleki†,
Madanlal Musuvathi†, and Todd Mytkowicz†

*Department of Computer Science, University of Texas at Austin, USA
roshan@cs.utexas.edu

†Microsoft Research, USA
{olsaarik,haoche,kilai,klauter,saemal,madanm,toddm}@microsoft.com

Abstract

Fully Homomorphic Encryption (FHE) provides the promise of performing arbi-
trary computations on encrypted data without requiring the decryption key. FHE
can enable novel privacy-sensitive machine learning scenarios. However, program-
ming FHE applications today is hard for non-FHE experts due to two challenges.
First, achieving practical performance requires performing FHE-specific optimiza-
tions, including maximizing the vectorizing/batching capabilities of the underlying
FHE scheme. Second, FHE schemes involve a careful choice of encryption param-
eters that tradeoff security for correctness, performance, and message bloat.
This paper proposes CHET, a compiler and runtime for homomorphically evaluating
tensor programs. Given a neural network specified as a high-level tensor circuit,
CHET optimizes and compiles this circuit to an interface called the Homomorphic
Instruction Set Architecture (HISA), which can then be targetted to different
encryption libraries. CHET automatically chooses the encryption parameters and
layouts that maximize performance for a given security and precision requirements.
As a result, CHET generated code is faster than expert-optimized implementations.

1 Introduction

Privacy-preserving machine learning extends the scope of neural networks to fields such as healthcare,
banking, and finance. As an example, a hospital might desire to use the massive compute capabilities
of a public cloud to analyze its patient data to improve its healthcare, but is unable to do so today due
to privacy concerns.

Fully Homomorphic Encryption (FHE) provides the promise of performing neural network inference
and training tasks on encrypted data without requiring the decryption key. FHE provides a simple
trust model: the data owner neither needs to trust the cloud software provider nor the vendor of
the hardware doing the computation. In contrast, other cryptographic solutions like Secure Multi-
Party Computation (MPC) [13, 14] require non-collusion assumptions and typically have larger
communication costs. Non-cryptographic technologies such as secure enclaves [11] (such as Intel
SGX [8]) requires one to trust the hardware vendor, which could be a non-starter for many privacy-
sensitive applications.

FHE is usually considered impractical due to its performance overhead. However, recent advances
in FHE schemes and implementations have dramatically improved the performance to make many
applications practical. Morover, modern FHE schemes [5, 9, 7] organically support integer and
fixed-precision arithmetic dramatically reducing the size of the circuits required when compared

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

to schemes that only provide Boolean operations. Nevertheless, achieving acceptable performance
remains a huge challenge.

Another concern is that building efficient FHE applications is manual and error-prone. Specifically,
FHE schemes require setting of encryption parameters that involve complex trade offs among
correctness, performance, security, and message bloat. Thus, many applications of FHE today require
an active involvement of an FHE expert.

In this paper, we address these challenges with CHET, a compiler and runtime for fully-homomorphic
evaluation of tensor programs. Given a neural network specified as a high-level tensor program,
CHET compiles it to an intermediate representation called as Homomorphic Instruction Set Architec-
ture (HISA). The HISA representation can then be targetted to an appropriate FHE library, such as
HEAAN [7], that provides the desired encryption schemes implementing HISA. We assume that the
activations functions are replaced with polynomial approximations [10, 6].

CHET guarantees sound semantics by selecting the right encryption parameters that maximize
performance while guaranteeing security and application-intended precision of the computed results.
In addition, CHET explores a large space of optimization choices, such as the multiple ways to batch
data into ciphertexts as well as multiple ways to implement computational kernels for each layout.

We evaluate CHET with a set of real-world CNN models and show how compiler optimizations
can significantly improve inference latencies. We further demonstrate how the optimized kernel
implementations in CHET allow neural networks of large depths to be homomorphically evaluated.
Specifically, we show that different neural networks require subtly different layout and optimization
parameters to maximize performance, suggesting that a compiler is better suited to make these choices
than a human. In particular, for a neural network used by an industry partner for medical imaging,
the inference using the straightforward implementation on HEAAN took more than 18 hours. A
hand-tuned implementation by an FHE expert reduced this to 40 minutes, while CHET generated an
implementation that only takes 5 minutes.

2 Software Stack for Homomorphic Evaluation of Tensor Programs

Encryptor
&

Decryptor

Optimized
Homomorphic
Tensor Circuit

CHET
CompilerTensor Circuit

Schema of
Image & Weights

Desired Output
Precision

Figure 1: Overview of the CHET system at
compile-time.

This section presents an overview of an end-
to-end software stack for evaluating tensor pro-
grams on homomorphically encrypted data. The
target architecture for this stack is a Fully Homo-
morphic Encryption (FHE) scheme and our ten-
sor compiler, CHET, interacts with this scheme
using the Homomorphic Instruction Set Archi-
tecture (HISA). At the top of stack rests the user-
provided tensor program or circuit. CHET con-
sists of a compiler and runtime to bridge the gap
in-between them.

Figure 1 shows the overview of the CHET com-
piler. In addition to the tensor circuit, CHET re-
quires the schema of its input and weights. The
schema specifies the dimensions of the tensors as well as the floating-point precision required of
the values in those tensors. CHET also requires the desired floating-point precision of the output of
the circuit. Using these constraints, CHET generates an equivalent, optimized homomorphic tensor
circuit as well as an encryptor and decryptor. These executables encode the choices made by the
compiler to make the homomorphic computation efficient.

To evaluate the tensor circuit on an image, the client first generates a private key and encrypts the
image using the encryptor (which can also generate private keys) provided by the compiler, as shown
in Figure 2. The encrypted image is then sent to the server along with unencrypted weights and
public keys required for evaluating homomorphic operations (i.e., multiplication and rotation). The
server executes the optimized homomorphic tensor circuit generated by the CHET compiler. The
homomorphic tensor operations in the circuit are executed using the CHET runtime, which uses
an underlying FHE scheme to execute homomorphic computations on encrypted data. The circuit
produces an encrypted prediction, which it then sends to the client. The client decrypts the encrypted

2

Encryptor
&

Decryptor

Image Encrypted
Image

Encryptor
&

Decryptor

Encrypted
Prediction Prediction

Client Client
Optimized

Homomorphic
Tensor Circuit

CHET Runtime

FHE Scheme

Encrypted
Image

Encrypted
Prediction

Server

WeightsWeights

Private Key Public Keys Public Keys Private Key

Figure 2: Overview of the CHET system at runtime.

prediction with its private keys using the compiler generated decryptor. In this way, the client runs
tensor programs like neural networks on the server without the server being privy to the data, the
output (prediction), or any intermediate state.

The FHE scheme exposes several policies or heuristics such as the encryption parameters. Similarly,
the CHET runtime also exposes several policies that could be specific to or independent of the FHE
scheme. This is analogous to Intel MKL libraries having different implementations of the same
operation, where the most performant implementation depends on the size of the input or the target
architecture. In the case of homomorphic computation, these policies not only affect performance but
can also affect security and accuracy. A key design principle of CHET is the separation of concern
between the policies of choosing the secure, accurate, and most efficient homomorphic operation
from the mechanisms of executing those policies. Some of these policies are independent of the input
or weights schema, so they are entrusted to the CHET runtime. On the other hand, most policies
may require either the input or weights schema or global analysis of the program. In such cases, the
CHET compiler chooses the appropriate policy and the CHET runtime implements the mechanisms
for that policy.

3 Evaluation

Our evaluation targets a set of neural network architectures for image classification tasks.

LeNet-5-like is a series of networks for the MNIST [2] dataset. We use three versions with different
number of neurons: LeNet-5-small, LeNet-5-medium, and LeNet-5-large. The largest one
matches the one used in the TensorFlow’s tutorials [4] (21385674 floating-point operations).
These networks have two convolutional layers, each followed by ReLU activation and max
pooling, and two fully connected layers with a ReLU in between.

SqueezeNet-CIFAR is a network for the CIFAR-10 dataset [1] that follows the SqueezeNet [12]
architecture. This version has 4 Fire-modules [3] for a total of 10 convolutional layers
(37759754 floating-point operations).

Industrial is a pretrained HE-compatible network from an industry partner for a privacy-sensitive
image classification task. We are unable to reveal the details of the network other than the
fact that it has 5 convolutional layers and 2 fully connected layers.

All networks other than Industrial use ReLUs and max-pooling, which are not compatible with
homomorphic evaluation. We modified the activation functions from ReLU to a second-degree
polynomial [10, 6]. The key difference with prior work is that our activation functions are f(x) =
ax2 + bx with learnable parameters a and b. During the training phase, the DNN adjusts these
parameters automatically to appropriately approximate the ReLU function. To avoid exploding the
gradients during training (which usually happens during the initial parts of training), we initialized a
to zero and clipped the gradients when large. We also replaced max-pooling with average-pooling.
To the best of our knowledge, SqueezeNet-CIFAR is the deepest neural network that has been
homomorphically evaluated.

Model CHET Hand-written

LeNet-5-small 8 14
LeNet-5-medium 51 140
LeNet-5-large 265 -
Industrial 312 2413
SqueezeNet-CIFAR10 1342 -

Table 1: Average latency (in seconds) of
CHET and hand-written versions.

All experiments were run on a dual socket Intel Xeon
E5-2667v3@3.2GHz with 224 GB of memory. Hy-
perthreading was off for a total of 16 hardware threads.
All runtimes are reported as averages over 20 differ-
ent images. We present the average latency of image
inference with a batch size of 1.

3

Comparison with hand-written: Table 1 com-
pares hand-written implementations and CHET with
all optimizations. CHET clearly outperforms hand-written implementations. The hand-written
implementations lack some of the optimizations in the CHET compiler and runtime. Moreover, it
is difficult to scale these hand-written implementations to large networks like LeNet-5-large and
SqueezeNet-CIFAR10, so we do not have hand-written implementations for these to compare against.

Model log(N) log(Q) log(Pc) log(Pp)

LeNet-5-small 14 240 30 16
LeNet-5-medium 14 240 30 16
LeNet-5-large 15 400 40 20
Industrial 16 705 35 25
SqueezeNet-CIFAR10 16 940 30 20

Table 2: Encryption parameters (N and Q) selected by CHET
and the user-provided precisions (Pc and Pp) for each model.

Parameter Selection: In Table 2,
the last columns show precision (the
number of decimal digits) required
for the image or ciphertext (Pc) and
the weights or the plaintext (Pp), that
are provided by the user. The preci-
sion provided is used by the CHET
compiler to select the encryption pa-
rameters N and Q. The values of
these parameters grow with the depth
of the circuit, as shown in the figure. With these parameters, CHET generated homomorphic tensor
circuits achieve the same accuracy as the unencrypted circuits while providing strong security guar-
anty for the input, intermediate states, and the output. In addition, the difference between the output
values of these circuits is within the desired precision of the output.

Model HW CHW HW-conv CHW-fc
CHW-rest HW-before

LeNet-5-small 8 12 8 8
LeNet-5-medium 82 91 52 51
LeNet-5-large 325 423 270 265
Industrial 330 312 379 381
SqueezeNet-CIFAR 1342 1620 1550 1342

Table 3: Average latency (in seconds) with different layouts.

Data Layout Selection: We evalu-
ate four different data tiling layouts
choices: (i) HW: each ciphertext has
all height and width elements of a
single channel, (ii) CHW: each ci-
phertext has multiple channels (all
height and width elements of each),
(iii) HW-conv and CHW-rest: same
has CHW, but move to HW before
each convolution and back to CHW
after each convolution, and (iv) CHW-fc and HW-before: same as HW, but switch to CHW during the
first fully connected layer and CHW thereafter. Table 3 presents the average latency of each network
for each layout. We can see that for each network, a different layout provides the lowest latency. It
is very difficult for the user to determine which is the best data layout and more importantly, it is
difficult to implement each network manually using a different data layout. This highlights how the
compiler should search the space of possible layouts and kernel implementations for each program
separately, while entrusting the runtime to implement it efficiently. In this case, the compiler chooses
the best performing data layout for each network based on the cost model of HEAAN.

Model Unoptimized Optimized

LeNet-5-small 14 8
LeNet-5-medium 73 51
LeNet-5-large 426 265
Industrial 645 312
SqueezeNet-CIFAR 2648 1342

Table 4: Average latency (in seconds) with and
without rotation keys optimization.

Rotation Keys Selection: We evaluate the effi-
cacy of our rotation keys optimization on the three
largest networks. Figure 4 presents the average
latencies with the optimization on or off. The op-
timization provides significantly improved perfor-
mance for all networks and should be always used.
Having this optimization implemented as an auto-
matic compiler pass removes the burden of adding
proper rotation keys in each program separately.

4 Conclusion

Good abstractions separate concerns to either side of that abstraction. For example, x86 lets hardware
manufacturers innovate independently of the software developers and compiler writers that target that
abstraction. This paper introduces such an abstraction for FHE applications that cleanly abstracts and
exposes features of FHE implementations. We demonstrate a compiler and runtime that targets FHE
tensor programs, evaluate that compiler and runtime on real-world CNN models, and demonstrate

4

our compiler is able to significantly optimize the performance of FHE tensor programs. Because of
these optimizations, this paper demonstrates the deepest FHE based CNNs to date.

References
[1] The CIFAR-10 dataset. https://www.cs.toronto.edu/~kriz/cifar.html.

[2] The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/.

[3] Squeezenet for CIFAR-10. https://github.com/kaizouman/tensorsandbox/tree/
master/cifar10/models/squeeze.

[4] TensorFlow’s LeNet-5-like convolutional MNIST model example. https://github.com/
tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py.

[5] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):13,
2014.

[6] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel, and Emmanuel
Prouff. Privacy-preserving classification on deep neural network. IACR Cryptology ePrint
Archive, 2017:35, 2017.

[7] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption
for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors,
Advances in Cryptology – ASIACRYPT 2017, LNCS 10624, pages 409–437. Springer, 2017.
https://doi.org/10.1007/978-3-319-70694-8_15.

[8] Intel Corp. Intel software guard extensions (Intel SGX), ref. 332680-002. https://software.
intel.com/sites/default/files/332680-002.pdf, jun 2015.

[9] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.
IACR Cryptology ePrint Archive, 2012:144, 2012.

[10] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin E. Lauter, Michael Naehrig, and John
Wernsing. Cryptonets: Applying neural networks to encrypted data with high throughput and
accuracy. In Proceedings of the 33nd International Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24, 2016, pages 201–210, 2016.

[11] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan Del Cuvillo.
Using innovative instructions to create trustworthy software solutions. In Proceedings of the
2Nd International Workshop on Hardware and Architectural Support for Security and Privacy,
HASP ’13, pages 11:1–11:1, New York, NY, USA, 2013. ACM.

[12] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J. Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and <1mb model
size. CoRR, abs/1602.07360, 2016. https://arxiv.org/abs/1602.07360.

[13] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine
learning. In 2017 IEEE Symposium on Security and Privacy (SP), pages 19–38, May 2017.

[14] Bita Darvish Rouhani, M. Sadegh Riazi, and Farinaz Koushanfar. Deepsecure: Scalable
provably-secure deep learning. CoRR, abs/1705.08963, 2017.

5

https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://github.com/kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze
https://github.com/kaizouman/tensorsandbox/tree/master/cifar10/models/squeeze
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://github.com/tensorflow/models/blob/v1.9.0/tutorials/image/mnist/convolutional.py
https://doi.org/10.1007/978-3-319-70694-8_15
https://software.intel.com/sites/default/files/332680-002.pdf
https://software.intel.com/sites/default/files/332680-002.pdf
https://arxiv.org/abs/1602.07360

	Introduction
	Software Stack for Homomorphic Evaluation of Tensor Programs
	Evaluation
	Conclusion

