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Abstract

Protecting a secret while disclosing related information (utility) is a well known
challenge in privacy; both users and service providers can and should collaborate to
protect privacy, and this paper addresses this paradigm. Here we analyze the limits
of information-theoretic privacy, and use these to design a data-driven privacy-
preserving representation of the disclosed data X that is maximally informative
about the utility variable U and minimally informative about the secret variable S.
We describe important use-case scenarios where the utility providers are willing
to collaborate, at least partially, with the sanitization process. In this setting, we
limit the possible sanitization functions to space-preserving transformations, where
the same algorithm can be used to infer the utility variable on both sanitized and
unsanitized data. We illustrate this approach though two use cases; subject-within-
subject, where we tackle the problem of having an identity detector (from facial
images) that works only on a consenting subset of users; and emotion-and-gender,
where we tackle the issue of hiding independent variables, as is the case of hiding
gender while preserving emotion detection.

1 Introduction, Challenges, and Contributions

We describe a scenario in which we have access to possibly high-dimensional data X ∈ X , this
data depends on two special latent variables U and S. U is called the utility latent variable, and is a
variable we want to communicate, while S is called the secret, and is a variable we want to protect.
We consider two agents, a service provider that wants to estimate U from X , and an adversary that
wants to infer S from X . Our task is to communicate a sanitized representation of data X in such a
way that a latent variable U can be inferred, but a sensitive latent variable S remains hidden.

The privacy learning algorithm is implemented as an adversarial game between the agent attempting
to infer S and the privatizer, communicating US is a requirement of the privatizer. The learning
algorithm is readily applicable to cases where the utility and secrecy variables U and S are either
categorical, or where an assumption can be made on their distribution.

Contributions-

We describe a framework where we can apply information theoretic concepts of privacy even when
the distributions on variables X , U and S are unknown. We derive an information-theoretic bound on
privacy-preserving representations (mappings of X). The metrics induced by this bound are used to
learn such a representation directly from data, without prior knowledge of the joint distribution of the
observed data X and the latent variables U and S, but rather based on iid samples of these variables
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drawn from the respective distirbutions. This process can accommodate for several user-specific
privacy requirements, and can be modified to incorporate constraints about the service provider’s
existing utility inference algorithms.

Privacy-preserving representations learned with this framework have provable lower bounds, with a
controllable parameter to control trade-off between the expected information leakage of the secret
variable S and the expected information loss on the utility variable U .

We show example applications on facial images for two specific use cases; subject-within-subject,
where we tackle the problem of having an identity detector (from facial images) that works only on a
consenting subset of users; and emotion-and-gender, where we hide independent variables, as is the
case of hiding gender while preserving emotion detection.

2 Information-theoretic bounds on privacy

Consider the utility and secret variables U and S defined over alphabets U , S,and the observed
data variable X , defined over X , with joint distribution PX,U,S . Figure 1 illustrates this set-up, and
shows the fundamental relationship of their entropies H(·) and mutual information between various
variables.

Figure 1: Left side shows the dependency structure of variables U , S, and X , along with important information
measures. Right side extends this mapping to show the sanitized data Q(X), conditionally independent of U
and S given X . The information leakage I(S;Q(X)) and censured information I(U ;X | Q(X)) shown in red
and blue respectively cannot be simultaneously set to 0, since they are partially at odds.

We analyze the properties of any stochastic mapping Q : X → Q, and measure the resulting mutual
information between the transformed variable Q(X) and our quantities of interest. Our goal is to
find Q such that the information leakage from our sanitized data I(S;Q(X)) is minimized, while
maximizing the shared information of the utility variable I(U ;Q(X)), maximizing I(U ;Q(X)) is
equivalent to minimizing I(U ;X | Q(X)). The quantity I(U ;X | Q(X)) is the information X
contains about U that is censured (lost) by the sanitization mapping Q.

Figure 1 illustrates I(S;Q(X)) and I(U ;X|Q(X)). One can see that there exists a trade-off area,
I(U, S)− I(U, S|X), that is always included in the union of I(S;Q(X)) and I(U ;X|Q(X)). The
lower we make I(S;Q(X)), the higher we make the censored information I(U ;X|Q(X)), and vice
versa. This induces a lower bound over the performance of the best possible mappings Q(X) that is
formalized in the following lemma.

Lemma 1: Let X,U, S be three discrete random variables with joint probability distribution PX,U,S .
For any stochastic mapping Q : X → Q we have

[I(S;Q(X)] + [I(U ;X|Q(X))] ≥ I(U ;S)− I(U ;S|X). (1)

Note that we can equivalently express
I(U ;X | Q) = EX,Q

[
DKL(pU |X || pU |Q)

]
,

I(S,Q) = EX,Q
[
RDKL(pS || pS|Q)

]
,

(2)

where DKL and RDKL are the Kullback-Leibler and reverse Kullback-Leibler divergence.

2.1 Defining a trainable loss metric

Assume that for any given stochastic transformation mapping Q ∼ Q(X), we have access to the
posterior conditional probability distributions P (S | Q), P (U | Q) , and P (U | X). Assume we also
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have access to the prior distribution of P (S). Inspired by the bounds from the previous section, the
proposed privatizer loss is

minQ(1− α)E2
X,Q[DKL(pU |X || pU |Q)2] + αE2

X,Q[RDKL(pS || pS|Q)], (3)

where α ∈ [0, 1] is a tradeoff constant. A low α value implies a high degree of transparency (high
utility), while a high value of α implies a high degree of privacy.

We can prove that for any α ∈ [0, 1], and stochastic mapping Q : X → Q the solution Q∗ to Eq.3
guarantees the following bounds,

EX,Q∗ [DKL(pU |X || pU |Q∗)] ≥ α[I(U, S)− I(U, S | X)],

EX,Q∗ [RDKL(pS || pS|Q∗)] ≥ (1− α)[I(U, S)− I(U, S | X)].
(4)

so, using the training objective in Eq.3, one is deliberately trying to match the left hand side of Eq 1
(which depends on Q) to the right hand side of eq 1 (which is a fundamental limit).

3 A Data-Driven implementation

The privatizer can attempt to minimize Eq.3 even when the joint distribution of P (U, S,X) is not
known by optimizing the following adversarial game:

η̂ = argminηEX,S,Z
[
− log(Pη(s|Qθ̂(x, z))

]
,

ψ̂ = argminψEX,U,Z
[
− log(Pψ(u|Qθ̂(x, z))

]
,

φ̂ = argminφEX,U
[
− log(Pφ(u|x)

]
,

θ̂ = argminθ(1− α)E2
X,U,Z

[
DKL(Pφ̂(u | x) || Pψ̂(u | Qθ̂(x, z)))]+

+ αE2
X,S,Z

[
RDKL(P (s) || Pη̂(s | Qθ̂(x, z)))].

(5)

Where Pη(s|q), Pψ(u|q), and Pφ(u|x) estimators of the posterior of S and U after observing X and
Qθ̂(x, z).

3.1 Privacy Under Fixed Utility Inference

A more interesting restriction arises when the utility inference algorithm Pφ(u|x) is given and cannot
be modified. Furthermore, the privatizer is tasked with finding a mapping Q such that Pφ(u|x)
applied to Qθ̂(x, z) still produces correct results, here we optimize

η̂ = argminηEX,S,Z
[
− log(Pη(s|Qθ̂(x, z))

]
,

θ̂ = argminθ(1− α)E2
X,U,Z

[
DKL(Pφ̂(u | x) || Pφ̂(u | Qθ̂(x, z)))]+

+ αE2
X,S,Z

[
RDKL(P (s) || Pη̂(s | Qθ̂(x, z)))].

(6)

4 Experiments and Results

The following examples are based on the framework presented in Figure 2. Here we have the three
key agents mentioned before: (1) the utility algorithm that is used by the provider to estimate the
information of interest. This algorithm can take the raw data (X) or the mapped data (Q(X)) and be
able to infer the utility; (2) the secret algorithm that is able to operate on the raw data and the mapped
data to infer the secret; (3) the privatizer that learns a space preserving mapping Q that allows the
provider to learn the utility but prevents the secret algorithm to infer the secret.

4.1 Subject Within Subject

We analyze the subject-within-subject problem. Here, we want that a pretrained face verification algo-
rithm can only verify the identity of a consenting subset of users, while blocking this task on noncon-
senting users. We show this by training a space-preserving stochastic mapping Q on facial image data
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Figure 2: Three components of the collab-
orative privacy framework. Raw data can
be directly fed into the secret and utility in-
ferring algorithm. Since the privatization
mapping is space preserving, the privatized
data can also be directly fed to both tasks
without any need for further adaptations.

X , where the utility variable U is a categorical variable over the consenting users, and the secrecy vari-
able S is a categorical variable over the non-consenting users. We test this over the FaceScrub dataset
[Kemelmacher-Shlizerman et al.(2016)Kemelmacher-Shlizerman, Seitz, Miller, and Brossard], us-
ing VGGFace2 [Cao et al.(2017)Cao, Shen, Xie, Parkhi, and Zisserman] as the base utility and se-
crecy inferring algorithm. The stochastic mapping was implemented using a stochastic adaptation
of the UNET [Ronneberger et al.(2015)Ronneberger, Fischer, and Brox], where a Gaussian noise
variable is learned along the image transformation, and is then injected before the upsampling stages.

Table 1 shows the top-5 categorical accuracy of the utility network over the sanitized data at various
α points in the privacy-utility trade-off. Figure 3 show representantive images and samples of their
sanitized counterparts.

(a) Filtered images of consenting
users (CU)

(b) Filtered images of private users
(PU)

Top-5 Accuracy
α CU PU NU
0 99.8% 99.8% 99.8%
0.3 94.7% 86.1% 87.5%
0.35 93.5% 15.3% 33.6%
0.40 93.0% 14.9% 31.8%
0.45 89.4% 12.6% 30.2%
0.50 70.7% 10.9% 27.0%

Table 1: Subject detection on
users

Figure 3: Left and center figures show images of consenting and nonconsenting (private) users respectively,
along with their sanitized counterparts. The identity of consenting users is still easily verified, while the identity
of nonconsenting users is effectively censored. Table on the right shows Top-5 accuracy performance of the
subject detector after sanitization across several sanitation levels α. Performance is shown across 3 subsets,
consenting users (CU), private users (PU), and new users (NU), this last group shows that the default behaviour
of the sanitization function is to preserve privacy

We can see from Table 1 that the sanitization function is able to preserve information about the utility
variable while effectively censoring the secret variable. This performance extends to unobserved
images of the consenting subjects, and to images of new users.

4.2 Obfuscating Emotion While Preserving Gender

Here we continue to work on facial image data X , where utility variable U is gender, and the secret
variable S is emotion (smiling/non-smiling). In this scenario, variables U and S are independent. We
implement this over the CelebA dataset [Liu et al.(2015)Liu, Luo, Wang, and Tang], using Xception
networks [Chollet(2017)] as our utility and privacy estimators. Table.2 shows the distribution of the
utility and secrecy estimators over the sanitized data. Figure 4 shows example sanitized images. It is
visually possible to identify the gender of the subject but not their emotion. Most importantly, the
existing gender detection algorithm still performs correctly over the sanitized images.

Figure 4: Images before and after sanitization for Gen-
der (utility) vs Emotion (privacy).

Inference Data Male Female

Gender Raw 94.2% 94.5%
Sanit. 91.2% 96.1%

Emotion Raw 93.3% 92.0%
Sanit. 54.0% 60.0%

Table 2: Gender and emotion detection
on users on raw and sanitized data.
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