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Abstract

We give a new method for computing a differentially private covariance matrix,
suitable for use in a variety of regression settings, from a collection of user data.
In contrast to previous methods, our approach has zero failure probability, and can
be employed to compute the full matrix (not just the top k eigenvectors). As part
of our analysis, we derive a precise expression for allocating the privacy budget ε
among different components to minimize overall error. We then show empirically
that our method outperforms previous state-of-the-art approaches, yielding lower
error and better learning performance.

1 Introduction

Differential privacy has emerged as a standard framework for thinking about user privacy in the
context of large scale data analysis [Dwork et al., 2014a]. While differential privacy does not protect
against all attack vectors, it does provide formal guarantees about possible information leakage. A
key feature of differential privacy is its robustness to post-processing: once a dataset is certified as
differentially private, arbitrary post-processing can be performed without additional privacy impact.

The past decade has seen the emergence of a wide range of techniques for modifying classical
learning algorithms to be differentially private [McSherry and Mironov, 2009, Chaudhuri et al.,
2011, Jain et al., 2012, Abadi et al., 2016]. These algorithms typically train directly on the raw
data, but are guaranteed to produce differentially private outputs. An alternative approach is to first
preprocess the dataset into a differentially private form and then freely choose among standard off-
the-shelf algorithms for learning. This not only provides more flexibility in the design of the learning
system, but also removes the need for access to sensitive raw data (except for the initial preprocessing
step). Thus, this approach falls under the umbrella of “data release”: since the preprocessed dataset
is differentially private, it can (in principle) be released without leaking any individual’s data.

In this work we consider the problem of computing, in a differentially private way, a specific repre-
sentation of a dataset: its covariance matrix. Formally, given a data matrix X ∈ Rd×n, each column
corresponds to a data point, we aim to compute a private version of C = XX>, which can be used
in place of the raw data as the basis for standard linear regression algorithms. Our methods provide
privacy guarantees for the columns of X.

A naı̈ve approach using a standard differential privacy mechanism would be to simply add an ap-
propriate amount of Laplace noise independently to every element in the true covariance matrix C.
However, the amount of noise required makes such a mechanism impractical. A better approach
is to add Gaussian noise [Dwork et al., 2014b]; however, this results in (ε, δ)-differential privacy,
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where, with some probability δ, user privacy can be violated. Another approach, proposed in Chaud-
huri et al. [2012], is to compute a private version of PCA. This approach has two major flaws when
applied to our setting. First, it only works for computing the top eigenvectors, and fails to give
non-trivial results for computing the full covariance matrix. Second, the sampling itself is quite
involved and requires the use of a Gibbs sampler. Since it is generally impossible to know when the
sampler converges, adding noise in this way can seriously compromise the privacy guarantees of the
mechanism.

The approach we propose in this work guarantees pure ε-differential privacy, can be used to obtain a
full-rank covariance matrix, is practical, and, empirically, leads to lower approximation errors than
the two mentioned baselines. On the technical side, we show how the overall privacy budget of ε
should be split among the d eigenvectors in order to reduce overall error.

Formal Problem Setting and Notation. Let X ∈ Rd×n be a data matrix where each column
corresponds to a d-dimensional data point. Our goal is to privately release an estimate of the un-
normalized and uncentered covariance matrix C = XX> ∈ Rd×d. In particular, we assume that
the columns of X have `2-norm bounded by 1, and we say that two data matrices X and X̃ are
neighbors if they differ on at most one column. We want algorithms that are ε-differentially private
with respect to neighboring data matrices. Formally, an algorithm A is ε-differentially private if for
every pair of neighboring data matrices X and X̃ and every set O of possible outcomes, we have:

Pr(A(X) ∈ O) ≤ eε Pr(A(X̃) ∈ O) . (1)

2 Iterative Eigenvalue Sampling for Covariance Estimation

The high-level approach of our method is to approximate the eigendecomposition of the covariance
matrix C by privately estimating the collection of eigenvalues and eigenvectors separately. Since
the vector of eigenvalues has low sensitivity, we can accurately estimate them using the Laplace
mechanism. To estimate the eigenvectors we use the exponential mechanism to sample a direction
from the unit sphere Sd−1 that approximately maximizes θ>Cθ, which measures the directional
variance of C captured by the direction θ. We constrain each sampled eigenvector to be orthogonal
to the vectors sampled so far. Our main contribution is to provide utility guarantees for this method.
Based on this utility guarantee, we are able to divide a total privacy budget of ε across the d + 1
private queries made by the algorithm in order to optimize accuracy of the final output. Pseudocode
for this approach is given in Algorithm 1

Algorithm 1 Iterative Eigenvector Sampling
Input: True covariance matrix C = XX> ∈ Rd×d, privacy parameters ε0, . . . , εd.

1. Let λ̂i = λi(C) + Lap(ε0/2) for i = 1, . . . , d.
2. Let C1 = C.
3. Let P1 = I

4. For i = 1, . . . , d:
(a) Sample ûi from density proportional to fCi

(u) = exp( εi4 u
>Ciu) supported on Sd−1 and

let θ̂i = P>i ui

(b) Let Ui be the subspace spanned by θ̂1, . . . , θ̂i and Pi ∈ R(d−i)×d be the euclidean projec-
tion matrix onto the orthogonal complement of Ui.

(c) Let Ci+1 = PiCP>i .

5. Output Ĉ =
∑d
i=1 λ̂iθ̂iθ̂

>
i .

This method applies the Laplace mechanism to estimate the vector of eigenvalues of C, and the
exponential mechanism to estimate each eigenvector. Our privacy guarantees follow from bounds on
the sensitivity of the vector of eigenvalues of the covariance matrix C, and bounds on the sensitivity
of the utility function used with the exponential mechanism on each iteration.

Theorem 1. Algorithm 1 preserves ε-differential privacy, where ε =
∑d
i=0 εi.
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Proof sketch. We show that the sensitivity of the vector-valued query of all d eigenvalues has `1-
sensitivity at most 2. This implies that we can estimate all d eigenvalues while preserving ε0-
differential privacy by adding Lap(2/ε0) to each eigenvalue.

The approximate eigenvectors ûi are evaluated using the exponential mechanism applied to maxi-
mizing the function θ> 7→ θCiθ over the unit sphere. We show that for any fixed vector θ ∈ Sd−1,
the maximum change in θ>Ciθ on two neighboring data matrices is at most 2. This implies that at
round i, we preserve εi-differential privacy when sampling ûi using the exponential mechanism.

The final privacy guarantee follows from basic composition over the d+1 steps of the algorithm.

Our main contribution is a utility guarantee for this algorithm bounding the Frobenius distance
between Ĉ and the true covariance matrix C as a function of the privacy parameters used for each
step. An important consequence of this analysis is that we can optimize the allocation of our total
privacy budget ε among the d+ 1 queries in order to get the best bound.

Theorem 2. Let δ > 0 and Ĉ be the estimated covariance matrix with estimated eigenvectors
θ̂1, . . . , θ̂d and eigenvalues λ̂1, . . . , λ̂d. Then with probability at least 1− δ, we have

‖Ĉ−C‖F ≤ Õ

 d

ε0
+

√√√√ d∑
i=1

d

εi

( 1
ε0

+ λ̂i
)

where the Õ notation hides a logarithmic dependency on 1/δ.

Proof sketch. Our analysis has two main steps. First, we argue that at every iteration, the matrix
θ̂i captures almost as much variance of Ci as the true top eigenvector of Ci. Intuitively, this fol-
lows from the standard utility analysis of the exponential mechanism, together with a lower bound
on the surface area of directions on Sd−1 of approximately variance maximizing directions. For-
mally, we show that with probability at least 1− δ over θ̂ sampled from the density proportional to
exp( ε4θ

>Cθ), we have
θ̂Cθ̂> ≥ max

θ∈Sd−1
θCθ> − Õ(d/ε). (2)

Notice that from the definiton of θ̂i as θ̂i = Piui then θ̂iCθ̂i = uiCiui and thus is approximately
equal to λmax(Ci),the largest eigenvalue of Ci. The crux of our proof is showing that λmax(Ci) ≥
λi. In other words, our sampling mechanism does not accumulate error in the projection steps. To
see that the statement is true notice that if we made a mistake in sampling θ̂1 then the projection P2

would keep some of the variance in the direction of the true eigenvector θ1. Therefore λmax(C2)
must include some contribution of λ1. This implies that λmax(C2) ≥ λ2. The argument can be
generalized to all the other sampled eigenvectors. We can now bound the squared Frobenius error
as follows:

‖Ĉ−C‖2F ≤ 2

d∑
i=1

λi(C) ·
(
λi(C)− θ̂>i Cθ̂i

)
.

But from equation (2) and the above discussion we know that λi(C) − θ̂>i Cθ̂i = Õ(d/ε) which
concludes the proof.

An important observation is that the utility guarantee given by Theorem 2 is expressed in terms of
quantities that are known after estimating the eigenvectors. This allows us to fine-tune the division
of our total privacy budget ε among the remaining eigenvector sampling tasks. In particular, we find

that εi should be set proportionally to
√
1/ε0 + λ̂i.

3 Experiments

In this section we compare our algorithm against three other baselines:
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Figure 1: Results on real-world datasets. (a) & (b) Frobenius error of the released covariance matrix
for the Wine and Airfoil data sets, respectively. (c) & (d) Average ridge regression error for the Wine
and Airfoil data sets, respectively. The exponential mechanism was excluded here due to extremely
large errors.

• The Laplace mechanism, which returns the matrix ĈL = C + L, where L is symmetric
with each entry above the diagonal distributed as Lap( 2dε ).

• The Gaussian mechanism, which returns the matrix ĈN = C+N, where N is symmetric
with each entry above the diagonal distributed as a Gaussian with mean 0 and standard

deviation
√

2 log(1.25/δ)

ε . The parameter δ was set to 10−10 to make the algorithm roughly
comparable to the other methods, which all achieve (ε, 0)-differential privacy.

• The exponential mechanism, which samples a matrix Ĉ with probability proportional to
f(Ĉ) = exp(‖Ĉ−C‖F ).

We measured the performance of our algorithm using two metrics: the Frobenius distance to the
true covariance matrix, and the error of ridge regression when evaluated on the original dataset. For
the second metric we predicted each column in the data matrix as a function of the other columns,
illustrating that the covariance matrix can be used for a variety of learning tasks. (This is in contrast
to methods for directly performing differentially private regression on raw data, which need to use
additional privacy budget for each regression.) The result shown is the average error across all target
columns.

The data sets used for this experiment were the Wine data set, consisting of 200 examples and 14
dimensions, and the Airfoil data set, consisting of 1500 examples and 6 dimensions. The privacy
parameters of each stage our algorithm were tuned according to to the discussion following Theo-
rem 2 (while maintaining a total privacy cost of ε). We ran each experiment 100 times; the results
are shown in Figure 1. Notice that for almost all choices of ε, our algorithm outperforms the others.
This seems to indicate that there is a benefit to adding noise inversely proportional to the importance
of each eigenvector.
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