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Abstract

This work considers the multiple-source adaptation problem where the learner only
has access to predictors and density estimations trained on source domains, but
he has no access to all source data simultaneously. The goal is to combine source
predictors to derive an accurate predictor for any unknown mixture target domain.
We present the distribution-weighted combination solutions with strong theoretical
guarantees for the general stochastic scenario under cross-entropy loss and other
similar losses. Moreover, we give new algorithms for determining the solution
for the cross-entropy loss and other losses. We report the results on a real-world
dataset to show that our algorithm outperforms competing approaches by producing
a single robust model that performs well on any target mixture distribution.

1 Introduction
In many modern applications, often the learner has access to information about several source
domains, including accurate predictors possibly trained and made available by others, but no direct
information about a target domain for which one wishes to achieve a good performance. The target
domain can typically be viewed as a combination of the source domains, that is a mixture of their
joint distributions, or it may be close to such mixtures. In addition, often the learner does not have
access to all source data simultaneously, for legitimate reasons such as privacy, storage limitation, etc.
Thus the learner cannot simply pool all source data together to learn a predictor. Here, we focus on
the problem of multiple-source domain adaptation and ask how the learner can combine relatively
accurate predictors available for each source domain to derive an accurate predictor for any new
mixture target domain?

This is known as the multiple-source adaption (MSA) problem first formalized and analyzed theoreti-
cally by (10; 11) and later studied under various assumptions (5; 6; 8; 2; 7; 18). (10; 11) gave strong
theoretical guarantees for a distribution-weighted combination for the MSA problem, but they did not
provide any algorithmic solution. Furthermore, the solution they proposed could not be used for loss
functions such as cross-entropy, which require a normalized predictor. Their work also assumed a
deterministic scenario (non-stochastic) with the same labeling function for all source domains.

This work makes a number of novel contributions to the MSA problem. We give new normalized
solutions with strong theoretical guarantees for the cross-entropy loss and other similar losses. Our
guarantees hold even when the conditional probabilities for the source domains are distinct. A
by-product of our analysis is the extension of the theoretical results of (10; 11) to the stochastic
scenario, where there is a joint distribution over the input and output space.

Moreover, we give new algorithms for determining the distribution-weighted combination solution
for the cross-entropy loss and other losses. We prove that the problem of determining that solution
can be cast as a DC-programming (difference of convex) and prove explicit DC-decompositions. We
also give experimental results on a benchmark dataset demonstrating that our distribution-weighted
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combination solution is remarkably robust. Our algorithm outperforms competing approaches and
performs well on any target mixture distribution.

2 Problem setup
Let X denote the input space and Y the output space. We consider a multiple-source domain
adaptation (MSA) problem in the general stochastic scenario where there is a distribution over the
joint input-output space, X ×Y . This extends the deterministic scenario in (10; 11), where a target
function mapping from X to Y is assumed. This extension is needed for the analysis of the most
common and realistic learning setups in practice. We will identify a domain with a distribution over
X × Y and consider the scenario where the learner has access to a predictor hk, for each domain
Dk, k = 1, . . . , p. We will assume that X and Y are discrete, but our theory can be straightforwardly
extended to the continuous case with summations replaced by integrals in the proofs.

We consider two types of predictor functions hk, and their associated loss functions L under the
regression model (R) and the probability model (P) respectively,

hk ∶X → R, L∶R ×Y → R+ (R); hk ∶X ×Y → [0,1], L∶ [0,1]→ R+ (P).

We abuse the notation and write L(h,x, y) to denote the loss of a predictor h at point (x, y), that
is L(h(x), y) in the regression model, and L(h(x, y)) in the probability model. We will denote by
L(D, h) the expected loss of a predictor h on domain D: L(D, h) =E(x,y)∼D[L(h,x, y)]. Much of
our theory only assumes that L is convex and continuous. But, we will be particularly interested in
the case where in the regression model, L(h(x), y) = (h(x) − y)2 is the squared loss, and where in
the probability model, L(h(x, y)) = − logh(x, y) is the cross-entropy loss (log-loss).

We will assume that each hk is a relatively accurate predictor for the distribution Dk: there exists
ε > 0 such that L(Dk, hk) ≤ ε for all k ∈ [p]. We will also assume that the loss of the source
hypotheses hk is bounded, that is L(hk, x, y) ≤ M for all (x, y) ∈ X × Y and all k ∈ [p]. When
L is cross-entropy loss, we will further assume that source predictors are normalized for every x:
∑y∈Y hk(x, y) = 1, ∀x ∈ X , ∀k ∈ [p].
In the MSA problem, the learner’s objective is to combine hks to design a predictor with small
expected loss on a target domain that could be an arbitrary and unknown mixture of the source
domains, or even some other arbitrary distribution. It is worth emphasizing that the leaner has no
access to all source data simultaneously, and the leaner has no knowledge of the target domain.

Our solution extends the result of (10). We define the distribution-weighted combination of the
functions hk as follows. For any z ∈ ∆, η > 0, and (x, y) ∈ X ×Y ,

hηz(x) = ∑pk=1

zkD
1
k(x)+η

U1(x)
p

∑
p
k=1 zkD

1
k
(x)+ηU1(x)

hk(x), (R)

hηz(x, y) = ∑pk=1

zkDk(x,y)+η
U(x,y)
p

∑
p
j=1 zjDj(x,y)+ηU(x,y)

hk(x, y), (P)

where we denote by D1(x) the marginal distribution over X : D1(x) = ∑y∈Y D(x, y), and U1(x)
the uniform distribution over X . This extension may seem technically straightforward in hindsight,
but the form of the predictor was not immediately clear in the stochastic case.

3 Theoretical analysis
In this section, we present theoretical analyses of the general MSA setting under stochastic scenario.

Our theoretical results rely on the measure of divergence between distributions. The one that naturally
comes up in our analysis is the Rényi Divergence (12). We will denote by dα(D ∥D′) = eDα(D∥D′

)

the exponential of the α-Rényi Divergence of two distributions D and D′. More details of the Rényi
Divergence are given in Appendix D.

We first assume the target distribution DT is an unknown mixture of source distributions, such that
D1
T ∈ D1 = {∑pk=1 λkD

1
k ∶ λ ∈ ∆} in the regression model (R), or DT ∈ D = {∑pk=1 λkDk ∶λ ∈ ∆}

in the probability model (P). We will denote by DT (⋅∣x) and Dk(⋅∣x) the conditional proba-
bility distribution on the target and the source domain respectively. Given the same input x,
DT (⋅∣x),Dk(⋅∣x), k ∈ [p] are not necessarily the same. This is a novel extension that was not
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discussed in (11), where in the deterministic scenario, exactly the same labeling function f is
assumed for all source domains.

Our theoretical results depend on the following quantity: for some choice of α > 1, define εT by

εT = maxk∈[p] [ED1
k
(x)dα (DT (⋅∣x)∥Dk(⋅∣x))α−1 ]

1
α

ε
α−1
α M

1
α .

When the average divergence is small, α can be chosen to be very large and εT is close to ε. We have
theoretical guarantees for the distribution-weighted combination rules as follows.
Theorem 1. For any δ > 0, there exists η > 0 and z ∈ ∆ such that the following inequalities hold for
any α > 1:

L(DT , h
η
z) ≤ εT + δ (R); L(DT , h

η
z) ≤ ε + δ (P ).

The proof is given in Appendix A. The learning guarantees for the regression and the probability
model are slightly different, since the definitions of the distribution-weighted combinations are
different for the two models. Theorem 1 shows the existence of η > 0 and a mixture weight z ∈ ∆
with a remarkable property: in the regression model (R), for any target distribution DT whose
conditional probability DT (⋅∣x) is on average not too far away from Dk(⋅∣x) for any k ∈ [p], and
D1
T ∈ D1, the loss of hηz on DT is small. It is even more remarkable that, in the probability model (P),

the loss of hηz is at most ε on any target distribution DT ∈ D. Thus, hηz is a robust hypothesis with
favorable property for any such target distribution DT .

To cover the realistic cases in applications, we can further extend this result to the case where
the distributions Dk are not directly available to the learner, and instead estimates D̂k have been
derived from data, and further to the case where the target distribution DT is not a mixture of source
distributions. The details are given in Appendix A.

Finally, when L coincides with the cross-entropy loss in the probability model, we propose a
normalized distribution-weighted combination solution:

h
η

z(x, y) = hηz(x, y)/ {∑y∈Y hηz(x, y)}.
Its analysis is a complement to Theorem 1, which only works for the unnormalized hypothesis
hηz(x, y), and is provided in Appendix B.

4 Algorithms
We have shown that, for both the regression and the probability model, there exists a vector z defining
a distribution-weighted combination hypothesis hηz that admits very favorable guarantees. But how
we find a such z? This is a key question in the MSA problem which was not addressed by (10; 11): no
algorithm was previously reported to determine the mixture parameter z (even for the deterministic
scenario). Here, we give an algorithm for determining that parameter z.

Theorem 1 shows that the hypothesis hηz based on the mixture parameter z ∈ ∆ benefits from a strong
generalization guarantee. A key step in proving Theorem 1 is to show the existence of z such that for
any η, η′ > 0, ∀k ∈ [p], L(Dk, h

η
z) ≤ L(Dz, h

η
z) + η′, where Dz = ∑pk=1 zkDk. Thus, our problem

consists of finding a parameter z verifying this property. This, can be equivalently formulated as the
following optimization problem:

min
z∈∆,γ∈R

γ s.t. L(Dk, h
η
z) −L(Dz, h

η
z) ≤ γ, ∀k ∈ [p]. (1)

We give a DC-decomposition (difference of convex decomposition) of the objective for both models
in Appendix C, such that L(Dk, h

η
z)−L(Dz, h

η
z) = uk(z)− vk(z) for some convex functions uk, vk.

Thus Problem (1) becomes the following variational form of a DC-programming problem (15; 16; 14):

min
z∈∆,γ∈R

γ s.t.(uk(z) − vk(z) ≤ γ) ∧ ( − zk ≤ 0) ∧ (∑pk=1 zk − 1 = 0), ∀k ∈ [p]. (2)

The DC-programming algorithm works as follows. Let (zt)t be the sequence defined by repeatedly
solving the following convex optimization problem:

zt+1 ∈ argminz,γ∈R γ (3)

s.t. (uk(z) − vk(zt) − (z − zt)∇vk(zt) ≤ γ) ∧ ( − zk ≤ 0) ∧ (∑pk=1 zk − 1 = 0), ∀k ∈ [p],
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Table 1: Office dataset accuracy: We report accuracy across six possible test domains. We show
performance all baselines: CNN-a,w,d, CNN-unif, DW based on the learned z, and the jointly
trained model CNN-joint. DW outperforms all competing models.

Test Data
amazon webcam dslr aw ad wd awd mean

CNN-a 75.7 ± 0.3 53.8 ± 0.7 53.4 ± 1.3 71.4 ± 0.3 73.5 ± 0.2 53.6 ± 0.8 69.9 ± 0.3 64.5 ± 0.6
CNN-w 45.3 ± 0.5 91.1 ± 0.8 91.7 ± 1.2 54.4 ± 0.5 50.0 ± 0.5 91.3 ± 0.8 57.5 ± 0.4 68.8 ± 0.7
CNN-d 50.4 ± 0.4 89.6 ± 0.9 90.9 ± 0.8 58.3 ± 0.4 54.6 ± 0.4 90.0 ± 0.7 61.0 ± 0.4 70.7 ± 0.6
CNN-unif 69.7 ± 0.3 93.1 ± 0.6 93.2 ± 0.9 74.4 ± 0.4 72.1 ± 0.3 93.1 ± 0.5 75.9 ± 0.3 81.6 ± 0.5
DW (ours) 75.2 ± 0.4 93.7 ± 0.6 94.0 ± 1.0 78.9 ± 0.4 77.2 ± 0.4 93.8 ± 0.6 80.2 ± 0.3 84.7 ± 0.5
CNN-joint 72.1 ± 0.3 93.7 ± 0.5 93.7 ± 0.5 76.4 ± 0.4 76.4 ± 0.4 93.7 ± 0.5 79.3 ± 0.4 83.6 ± 0.4

where z0 ∈ ∆ is an arbitrary starting value. Then, (zt)t is guaranteed to converge to a local minimum
of Problem (1) (17; 14). Problem (3) is a relatively simple optimization problem: uk(z) is a weighted
sum of the negative logarithm of an affine function of z, plus a weighted sum of rational functions of
z (squared loss), and all other terms appearing in the constraints are affine functions of z.

5 Experiments

We evaluate our DC-programming solution applied to real-world visual domain adaptation benchmark
dataset Office (13), which has 3 domains: amazon, webcam, and dslr. We follow the standard
protocol from (13), whereby 20, 8, and 8 labeled examples are available for training from the amazon,
webcam and dslr domain respectively. The remaining examples from each domain are used for
testing. We use the AlexNet (9) ConvNet (CNN) architecture, pre-trained on ImageNet.

The probability distributions Dk are not readily available. However, Corollary 6 enables us to use
estimates D̂k instead. We estimate D̂k by kernel density estimation with fc7 activations (4) from
AlexNet as features. For each individual domain, we use the output from the softmax score layer as
our base predictors hk. We then learn the weights z on a small subset of combined training samples,
and obtain the distribution weighted predictor DW with hks, density estimates, and z.

We consider the uniformly weighted combination of source predictors, hunif = ∑pk=1 hk/p. We
also train a privileged baseline on all source data combined, hjoint, which is often not feasible if
independent entities contribute classifiers and densities, but not full training datasets for privacy
reasons. Thus this approach operates in a much more favorable learning setting than our solution.

We report the performance of our method (DW) and that of baselines (hk, hunif, hjoint) in Table 1. We
evaluate on various test distributions: each individual domain, the combination of each two domains
and the fully combined set. When the test distribution equals one of the source distributions, our
distribution-weighted classifier successfully outperforms (webcam,dslr) or maintains performance
of the classifier which is trained and tested on the same domain. For the more realistic scenario
where the target domain is a mixture of any two or all three source domains, the performance of our
method is comparable or marginally superior to that of the jointly trained network, despite the fact
that we do not retrain any network parameters in our method and that we only use a small number of
per-domain examples to learn the distribution weights – an optimization which may be solved on a
single CPU in a matter of seconds for this problem. This again demonstrates the robustness of our
distribution-weighted combined classifier to a varying target domain.

6 Conclusion

We presented practically applicable multiple-source domain adaptation algorithms for the cross-
entropy loss and other similar losses. These algorithms benefit from very favorable theoretical
guarantees that we extended to the stochastic setting. Our empirical results further demonstrate
empirically their effectiveness and their importance in adaptation problems.
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A Theoretical analysis for the stochastic scenario

In this section, we give a series of theoretical results for the general stochastic scenario with their
full proofs. We will separate the proofs for the regression model (Appendix A.1) and the probability
model (Appendix A.2), since the definitions of the distribution weighted combination are different in
the two models.

A.1 Regression model

The proofs for the regression model (R) are presented in the following order: we first assume the
conditional probabilities are the same across source domains, and prove Lemma 3; using that, we
prove Corollary 4 and Corollary 6. Finally, we relax the assumption of same conditionals, and prove
Theorem 7, which a stronger version of Theorem 1.

Our proofs make use of the following Fixed-Point Theorem of Brouwer.

Theorem 2. For any compact and convex non-empty set C ⊂ Rp and any continuous function
f ∶C → C, there is a point x ∈ C such that f(x) = x.

Lemma 3. For any η, η′ > 0, there exists z ∈ ∆, with zk ≠ 0 for all k ∈ [p], such that the following
holds for the distribution-weighted combining rule hηz :

∀k ∈ [p], L(Dk, h
η
z) ≤

p

∑
j=1

zjL(Dj , h
η
z) + η′. (4)

Proof. Consider the mapping Φ∶∆→∆ defined for all z ∈ ∆ by

[Φ(z)]k =
zk L(Dk, h

η
z) + η′

p

∑pj=1 zjL(Dj , h
η
z) + η′

.

Φ is continuous since L(Dk, h
η
z) is a continuous function of z and since the denominator is positive

(η′ > 0). Thus, by Brouwer’s Fixed Point Theorem, there exists z ∈ ∆ such that Φ(z) = z. For that z,
we can write

zk =
zk L(Dk, h

η
z) + η′

p

∑pj=1 zjL(Dj , h
η
z) + η′

,

for all k ∈ [p]. Since η′ is positive, we must have zk ≠ 0 for all k. Dividing both sides by zk gives
L(Dk, h

η
z) = ∑pj=1 zjL(Dj , h

η
z)+η′− η′

pzk
≤ ∑pj=1 zjL(Dj , h

η
z)+η′, which completes the proof.

Corollary 4. Assume the conditional probability Dk(y∣x) does not depend on k. Let Dλ be an
arbitrary mixture of source domains, λ ∈ ∆. For any δ > 0, there exists η > 0 and z ∈ ∆, such that
L(Dλ, h

η
z) ≤ ε + δ.

Proof. We first upper bound, for an arbitrary z ∈ ∆, the expected loss of hηz with respect to the
mixture distribution Dz defined using the same z, that is L(Dz, h

η
z) = ∑pk=1 zkL(Dk, h

η
z). By

definition of hηz and Dz , we can write

L(Dz, h
η
z) = ∑

(x,y)

Dz(x, y)L(hηz(x), y)

= ∑
(x,y)

Dz(x, y)L
⎛
⎜
⎝

p

∑
k=1

zkD
1
k(x) + η

U1
(x)
p

D1
z(x) + ηU1(x) hk(x), y

⎞
⎟
⎠
.
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By convexity of L, this implies that

L(Dz, h
η
z) ≤ ∑

(x,y)

Dz(x, y)
p

∑
k=1

zkD
1
k(x) + η

U1
(x)
p

D1
z(x) + ηU1(x) L(hk(x), y)

≤ ∑
(x,y)

Dz(y∣x)D1
z(x)

p

∑
k=1

zkD
1
k(x) + η

U1
(x)
p

D1
z(x) + ηU1(x) L(hk(x), y)

≤ ∑
(x,y)

Dz(y∣x)
p

∑
k=1

(zkD1
k(x) + η

U1(x)
p

)L(hk(x), y).

Next, observe that Dz(y∣x) = ∑pk=1
zkD

1
k(x)

D1
z(x)

Dk(y∣x) =Dk(y∣x) for any k ∈ [p] since by assumption
Dk(y∣x) does not depend on k. Thus,

L(Dz, h
η
z) ≤ ∑

(x,y)

Dz(y∣x)
p

∑
k=1

(zkD1
k(x) + η

U1(x)
p

)L(hk(x), y)

= ∑
(x,y)

p

∑
k=1

(zkDk(x, y) + ηDk(y∣x)
U1(x)
p

)L(hk(x), y)

=
p

∑
k=1

zkL(Dk, hk) +
η

p

p

∑
k=1

∑
(x,y)

Dk(y∣x)U1(x)L(hk(x), y)

≤
p

∑
k=1

zkL(Dk, hk) + ηM ≤
p

∑
k=1

zkε + ηM = ε + ηM.

Now, choose z ∈ ∆ as in the statement of Lemma 3. Then, the following holds for any mixture
distribution Dλ:

L(Dλ, h
η
z) =

p

∑
k=1

λkL(Dk, h
η
z) ≤

p

∑
k=1

λk(L(Dz, h
η
z) + η′)

= L(Dz, h
η
z) + η′ ≤ ε + ηM + η′.

Setting η = δ
2M

and η′ = δ
2

concludes the proof.

Next, we introduce a useful Corollary and give its proof.

Corollary 5. Let DT be an arbitrary target distribution. For any δ > 0, there exists η > 0 and z ∈ ∆,
such that the following inequality holds for any α > 1:

L(DT , h
η
z) ≤ [(ε + δ)dα(DT ∥ D)]

α−1
α

M
1
α .

Proof. For any hypothesis h∶X → Y and any distribution D, by Hölder’s inequality, the following
holds:

L(DT , h) = ∑
(x,y)∈X×Y

DT (x, y)L(h(x), y)

= ∑
(x,y)∈X×Y

[ DT (x, y)
D(x, y)α−1α

] [D(x, y)α−1α L(h(x), y)]

≤
⎡⎢⎢⎢⎢⎣
∑

(x,y)

DT (x, y)α
D(x, y)α−1

⎤⎥⎥⎥⎥⎦

1
α ⎡⎢⎢⎢⎢⎣
∑

(x,y)

D(x, y)L(h(x), y) α
α−1

⎤⎥⎥⎥⎥⎦

α−1
α

.
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Thus, by definition of dα, for any h such that L(h(x), y) ≤M for all (x, y), we can write

L(DT , h) ≤ dα(DT ∥D)α−1α
⎡⎢⎢⎢⎢⎣
∑

(x,y)

D(x, y)L(h(x), y) α
α−1

⎤⎥⎥⎥⎥⎦

α−1
α

= dα(DT ∥D)α−1α
⎡⎢⎢⎢⎢⎣
∑

(x,y)

D(x, y)L(h(x), y)L(h(x), y) 1
α−1

⎤⎥⎥⎥⎥⎦

α−1
α

≤ dα(DT ∥D)α−1α
⎡⎢⎢⎢⎢⎣
∑

(x,y)

D(x, y)L(h(x), y)M 1
α−1

⎤⎥⎥⎥⎥⎦

α−1
α

≤ [dα(DT ∥D)L(D, h)]
α−1
α

M
1
α .

Now, by Corollary 4, there exists z ∈ ∆ and η > 0 such that L(D, hηz) ≤ ε + δ for any mixture
distribution D ∈ D. Thus, in view of the previous inequality, we can write,for any D ∈ D,

L(DT , h
η
z) ≤ [(ε + δ)dα(DT ∥D)]

α−1
α

M
1
α .

Taking the infimum of the right-hand side over all D ∈ D completes the proof.

Corollary 6. Let DT be an arbitrary target distribution. Then, for any δ > 0, there exists η > 0 and
z ∈ ∆, such that the following inequality holds for any α > 1:

L(DT , ĥ
η
z) ≤ [(ε̂ + δ)dα(DT ∥ D̂)]

α−1
α

M
1
α ,

where ε̂ = maxk∈[p] [εdα(D̂k ∥Dk)]
α−1
α

M
1
α , and D̂ = {∑pk=1 λkD̂k ∶λ ∈ ∆}.

Proof. By the first part of the proof of Corollary 5, for any k ∈ [p] and α > 1, the following inequality
holds:

L(D̂k, hk) ≤ [dα(D̂k ∥Dk)L(Dk, hk)]
α−1
α

M
1
α

≤ [εdα(D̂k ∥Dk)]
α−1
α

M
1
α ≤ ε̂.

We can now apply the result of Corollary 5 (with ε̂ instead of ε and D̂k instead of Dk). In view that,
there exists η > 0 and z ∈ ∆ such that

L(DT , h
η
z) ≤ [(ε̂ + δ)dα(DT ∥ D̂)]

α−1
α

M
1
α ,

for any distribution D̂ in the family D̂. Taking the infimum over all D̂ in D̂ completes the proof.

This result shows that there exists a predictor ĥηz based on the estimate distributions D̂k that is
ε̂-accurate with respect to any target distribution DT whose Rényi divergence with respect to the
family D̂ is not too large (dα(DT ∥ D̂) close to 1). Furthermore, ε̂ is close to ε, provided that D̂ks
are good estimates of Dks (that is dα(D̂k ∥Dk) close to 1).

Corollary 6 used Rényi divergence in both directions: dα(DT ∥ D̂) requires Supp(DT ) ⊆ Supp(D̂),
and dα(D̂k ∥ Dk) requires Supp(D̂k) ⊆ Supp(Dk), k ∈ [p]. In our experiments in Section 5, we
used bigram language model for sentiment analysis, and kernel density estimation with a Gaussian
kernel for object recognition. Both density estimation methods fulfill these requirements.

Finally we prove our main result Theorem 1 under the regression model (R). We first prove a stronger
version for Theorem 1, next we show that it will coincide with Theorem 1 under the assumption that
D1
T ∈ D1.

8



Theorem 7. Let DT be an arbitrary target distribution. Then, for any δ > 0, there exists η > 0 and
z ∈ ∆ such that the following inequality holds for any α > 1:

L(DT , h
η
z) ≤ [(εT + δ)dα(DT ∥DP,T )]

α−1
α

M
1
α (R),

where

εT = max
k∈[p]

[ED1
k
(x)dα (DT (⋅∣x) ∥Dk(⋅∣x))α−1 ]

1
α

ε
α−1
α M

1
α ,

and Dk,T (x, y) =D1
k(x)DT (y∣x), DP,T = {∑pk=1 λkDk,T , λ ∈ ∆}.

Proof. For any domain k, by Hölder’s inequality, the following holds:

L(Dk,T , hk) =∑
x,y

D1
k(x)DT (y∣x)L(hk, x, y)

=∑
x

D1
k(x)∑

y

[ DT (y∣x)
Dk(y∣x)

α−1
α

] [Dk(y∣x)
α−1
α L(hk, x, y)]

≤∑
x

D1
k(x)dα(x;T, k)α−1α [∑

y

Dk(y∣x)L(hk, x, y)
α
α−1 ]

α−1
α

where, for simplicity, we write dα(x;T, k) = dα (DT (⋅∣x) ∥Dk(⋅∣x)). Using the fact that the loss is
bounded and Hölder’s inequality again,

L(Dk,T , hk) ≤∑
x

D1
k(x)

1
α dα(x;T, k)α−1α

⎡⎢⎢⎢⎣
∑
y

Dk(x, y)L(hk, x, y)
⎤⎥⎥⎥⎦

α−1
α

M
1
α

≤ [∑
x

D1
k(x)dα(x;T, k)α−1]

1
α ⎡⎢⎢⎢⎣
∑
x,y

Dk(x, y)L(hk, x, y)
⎤⎥⎥⎥⎦

α−1
α

M
1
α

≤ [ED1
k
dα(x;T, k)α−1]

1
α

ε
α−1
α M

1
α ≤ εT .

We can now apply the result of Corollary 5, with εT instead of ε and Dk,T instead of Dk. This
completes the proof.

When D1
T ∈ D1, DT ∈ DP,T , thus by the definition of Rényi divergence, dα(DT ∥ DP,T ) = 1.

Theorem 7 coincides with Theorem 1 in this case.

A.2 Probability model

In this section, we first present a series of general theoretical results for the probability model (P) in
the same order as in Appendix A.1 . Many of the them are similar to those for the regression model,
except that we do not assume anything about the conditional probabilities throughout the proofs. In
several instances, the proofs are syntactically the same as their counterparts in the regression model
(R). In such cases, we do not reproduce them.

Lemma 3. For any η, η′ > 0, there exists z ∈ ∆, with zk ≠ 0 for all k ∈ [p], such that the following
holds for the distribution-weighted combining rule hηz :

∀k ∈ [p], L(Dk, h
η
z) ≤

p

∑
j=1

zjL(Dj , h
η
z) + η′. (5)

Proof. The proof is syntactically the same as that for the regression model.

Corollary 4. For any δ > 0, there exists η > 0 and z ∈ ∆, such that L(Dλ, h
η
z) ≤ ε + δ for any

mixture parameter λ ∈ ∆.

9



Proof. Modifying the proof of Corollary 4 for the regression model gives

L(Dz, h
η
z) = ∑

(x,y)∈X×Y

Dz(x, y)L(hηz(x, y))

= ∑
(x,y)

Dz(x, y)L
⎛
⎜
⎝

p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y) + ηU(x, y) hk(x, y)
⎞
⎟
⎠
.

By convexity of L, this implies that

L(Dz, h
η
z) ≤ ∑

(x,y)

Dz(x, y)
p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y) + ηU(x, y) L
(hk(x, y)).

Next, since Dz(x,y)
Dz(x,y)+ηU(x,y)

≤ 1, the following holds:

L(Dz, h
η
z) ≤ ∑

(x,y)

(
p

∑
k=1

(zkDk(x, y) + ηU(x,y)
p

)L(hk(x, y)))

=
p

∑
k=1

zkL(Dk, hk) +
η

p

p

∑
k=1

L(U, hk)

≤
p

∑
k=1

zkε + ηM = ε + ηM.

Now choose z ∈ ∆ as in the statement of Lemma 4a.Then, the following holds for any mixture
distribution Dλ:

L(Dλ, h
η
z) =

p

∑
k=1

λkL(Dk, h
η
z) ≤

p

∑
k=1

λk(L(Dz, h
η
z) + η′)

= L(Dz, h
η
z) + η′ ≤ ε + ηM + η′.

Setting η = δ
2M

and η′ = δ
2

concludes the proof.

Since we do not assume the conditional probabilities are the same across domains, we can directly
prove Theorem 7 for the conditional probability model (P), which coincides with Theorem 1 when
DT ∈ D.
Theorem 7. Let DT be an arbitrary target distribution. For any δ > 0, there exists η > 0 and z ∈ ∆,
such that the following inequality holds for any α > 1:

L(DT , h
η
z) ≤ [(ε + δ)dα(DT ∥ D)]

α−1
α

M
1
α (P ).

Proof. The proof is syntactically the same as that of Corollary 5 for the regression model.

Corollary 6. Let DT be an arbitrary target distribution. Then, for any δ > 0, there exists η > 0 and
z ∈ ∆, such that the following inequality holds for any α > 1:

L(DT , ĥ
η
z) ≤ [(ε̂ + δ)dα(DT ∥ D̂)]

α−1
α

M
1
α ,

where ε̂ = maxk∈[p] [εdα(D̂k ∥Dk)]
α−1
α

M
1
α , and D̂ = {∑pk=1 λkD̂k ∶λ ∈ ∆}.

Proof. The proof is syntactically the same as that of Corollary 6 for the regression model.
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B Specific theoretical analysis for the cross-entropy loss

Next, we give a specific theoretical analysis for the case of the cross-entropy loss. This is needed
since the cross-entropy loss assumes normalized hypotheses. Thus, we are giving guarantees for the
performance of normalized distribution-weighted predictor.

We will first assume that the conditional probability of the output labels is the same for all source
domains, that is, for any (x, y), Dk(y∣x) is independent of k.
Theorem 8. Assume there exists µ > 0 such that Dk(x, y) ≥ µU(x, y) for all k ∈ [p] and (x, y) ∈
X ×Y . Then, for any δ > 0, there exists η > 0 and z ∈ ∆, such that L(Dλ, h

η

z) ≤ ε+δ for any mixture
parameter λ ∈ ∆.

Proof. By the proof of Corollary 4 for the probability model, for any mixture distribution Dλ:

L(Dλ, h
η
z) ≤ ε + ηM + η′,

for some η > 0, η′ > 0. For any x ∈ X ,

h
η

z(x) = ∑
y∈Y

p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y) + ηU(x, y) hk(x, y)

≤ ∑
y∈Y

p

∑
k=1

zkDk(x, y) + ηU(x,y)
p

Dz(x, y)
hk(x, y)

= 1 + η
⎡⎢⎢⎢⎢⎣

1

p
∑
y∈Y

p

∑
k=1

U(x, y)
Dz(x, y)

hk(x, y)
⎤⎥⎥⎥⎥⎦
.

By assumption, Dk(x, y) ≥ µU(x, y) for any (x, y). Therefore Dz(x, y) ≥ µU(x, y) for any z ∈ ∆.
Since 0 ≤ hk(x, y) ≤ 1, h

η

z(x) is upper bounded by

h
η

z(x) ≤ 1 + η
⎡⎢⎢⎢⎢⎣

1

p
∑
y∈Y

p

∑
k=1

U(x, y)
Dz(x, y)

hk(x, y)
⎤⎥⎥⎥⎥⎦
≤ 1 + η∣Y ∣

µ
.

It follows that

L(Dλ, h
η

z) = L(Dλ, h
η
z) +EDλ(x)[log(hηz(x))] ≤ ε + ηM + η′ + log(1 + η∣Y ∣

µ
)

≤ ε + η (M + ∣Y ∣
µ

) + η′.

Setting η = δ

2(M+
∣Y ∣
µ )

and η′ = δ
2

concludes the proof.

The analysis above depends on the key assumption that the conditional distributions Dk(y∣x) are
independent of k. When this assumption does not hold, we can show that there is a lower bound
of log(p) on the generalization error L(Dλ, h

η

z). In that case, one can use the following marginal
distribution-weighted combination instead:

h̃ηz(x, y) =
p

∑
k=1

zkD
1
k(x) + η

U1
(x)
p

∑pj=1 zjD
1
j(x) + ηU1(x)hk(x, y), (6)

where D1
k(x) is the marginal distribution over X , D1

k(x) = ∑y∈Y Dk(x, y), and U1(x) is a uniform
distribution over X . Observe that h̃ηz(x, y) is already normalized.

One can modify Theorem 7 to obtain generalization guarantees for h̃ηz under distinct conditional
probabilities assumption. Let DT (x, y), εT and DP,T be defined as before.
Theorem 9. Let DT be an arbitrary target distribution. Then, for any δ > 0, there exists η > 0 and
z ∈ ∆ such that the following inequality holds for any α > 1:

L(DT , h̃
η
z) ≤ [(εT + δ)dα(DT ∥DP,T )]

α−1
α

M
1
α .
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Proof. The proof is syntactically the same as that of Theorem 7.

Finally, we can extend Theorem 8 and Theorem 9 to the case where only estimate distributions D̂ks

are available, and the predictor ĥηz and ̃̂η
zh based on the estimates D̂k still admit favorable guarantees.

The results and proofs are similar to proving Corollary 6 from Corollary 5 in the regression model,
thus omitted here.
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C DC-decomposition

In this section we give the full DC-decompositions and their proofs mentioned in Section 4.
Proposition 10. Let L be the squared loss. Then, for any k ∈ [p], L(Dk, h

η
z) − L(Dz, h

η
z) =

uk(z) − vk(z), where uk and vk are convex functions defined for all z by
uk(z) = L (Dk + ηU1Dk(⋅∣x), hηz) − 2M∑

x

(D1
k + ηU1)(x) logKz(x),

vk(z) = L (Dz + ηU1Dk(⋅∣x), hηz) − 2M∑
x

(D1
k + ηU1)(x) logKz(x).

Proof. First, observe that (hηz(x) − y)2 = fz(x, y) − gz(x), where for every (x, y) ∈ X ×Y , fz and
gz are convex functions defined for all z:

fz(x, y) = (hηz(x) − y)
2 − 2M logKz(x),

gz(x) = −2M logKz(x).
This is true because the Hessian matrix of fz and gz are

Hfz =
2

K2
z

[hD,zhTD,z + (M − (y − hηz)2)DDT ] ,

Hgz =
2M

K2
z

DDT ,

where hD,z is a p-dimensional vector defined as [hD,z]k = Dk(hk + y − 2hηz) for k ∈ [p], and
D = (D1,D2, . . . ,Dp)T . Using the fact that M ≥ (y − hηz)2, Hfz and Hgz are positive semidefinite
matrices, therefore fz, gz are convex functions of z.

Thus, uk(z) = ∑(x,y)(D1
k + ηU1)(x)Dk(y∣x)fz(x, y) is convex. Similarly, we can write the second

term of vk(z) as ∑x(D1
k + ηU1)(x)gz(x), it is convex. Using the notation previously defined, we

can write the first term of vk(z) as

L(Dz + ηU1Dk(⋅∣x), hηz) =∑
x

Jz(x)2

Kz(x)
− 2E(y∣x)Jz(x) +E(y2∣x)Kz(x).

The Hessian matrix of J2
z /Kz is

∇2
z (

J2
z

Kz
) = 1

Kz
(hD − hηzD)(hD − hηzD)T

where hD = (h1D1, h2D2, . . . , hpDp)T and D = (D1,D2, . . . ,Dp)T . Thus J2
z /Kz is convex.

−2E(y∣x)Jz(x) + E(y2∣x)Kz(x) is an affine function of z and is therefore convex. Therefore the
first term of vk(z) is convex, which completes the proof.

Proposition 11. Let L be the cross-entropy loss. Then, for k ∈ [p], L(Dk, h
η
z) − L(Dz, h

η
z) =

uk(z) − vk(z), where uk and vk are convex functions defined for all z by
uk(z) = −∑

x,y

[Dk(x, y) + ηU(x, y)] logJz(x, y),

vk(z) =∑
x,y

Kz(x, y) log [Kz(x, y)
Jz(x, y)

]

− [Dk(x, y) + ηU(x, y)] logKz(x, y).

Proof. Using the notation previously introduced, we can now write
L(Dk, h

η
z) −L(Dz, h

η
z)

= E
(x,y)∼Dk

[− loghηz(x, y)] − E
(x,y)∼Dz

[− loghηz(x, y)]

=∑
x,y

(Dz(x, y) −Dk(x, y)) log [ Jz(x, y)
Kz(x, y)

]

=∑
x,y

[Kz(x, y) − (Dk(x, y) + ηU(x, y))] log [ Jz(x, y)
Kz(x, y)

]

= uk(z) − vk(z).
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uk is convex since − logJz is convex as the composition of the convex function − log with an affine
function. Similarly, − logKz is convex, which shows that the second term in the expression of vk is a
convex function. The first term can be written in terms of the unnormalized relative entropy:

∑
x,y

Kz(x, y) log [Kz(x, y)
Jz(x, y)

]

= B(Kz ∥ Jz) + ∑
(x,y)

(Kz − Jz)(x, y).

The unnormalized relative entropy of P and Q is defined by

B(P ∥ Q) =∑
x,y

P (x, y) log [P (x, y)
Q(x, y)] + ∑

(x,y)

(Q(x, y) − P (x, y)).

The unnormalized relative entropy B(⋅ ∥ ⋅) is jointly convex (3),1 thus B(Kz ∥ Jz) is convex as the
composition of the unnormalized relative entropy with affine functions (for each of its two arguments).
(Kz − Jz) is an affine function of z and is therefore convex too.

1To be precise, it can be shown that the relative entropy is jointly convex using the so-called log-sum
inequality (3). The same proof using the log-sum inequality can be used to show the joint convexity of the
unnormalized relative entropy.
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D Rényi Divergence

The Rényi Divergence measures the divergence between two distributions. The Rényi Divergence is
parameterized by α and denoted by Dα. The α-Rényi Divergence of two distributions D and D′ is
defined by

Dα(D ∥D′) = 1

α − 1
log ∑
(x,y)∈X×Y

D(x, y) [ D(x, y)
D′(x, y)]

α−1

. (7)

It can be shown that the Rényi Divergence is always non-negative and that for any α > 0, Dα(D ∥
D′) = 0 iff D =D′, (see (1)). We will denote by dα(D ∥D′) the exponential:

dα(D ∥D′) = eDα(D∥D
′
) =

⎡⎢⎢⎢⎢⎣
∑

(x,y)∈X×Y

Dα(x, y)
D′α−1(x, y)

⎤⎥⎥⎥⎥⎦

1
α−1

. (8)

Rényi divergence (and dα(D ∥D′)) is nondecreasing as a function of α, and

dα(D ∥D′) ≤ d∞(D ∥D′) = sup
(x,y)∈X×Y

[ D(x, y)
D′(x, y)] . (9)
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