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Abstract

Differentially private learning algorithms protect individual participants in the
training dataset by guaranteeing that their presence does not significantly change
the resulting model. In order to make this promise, such algorithms need to know
the maximum contribution that can be made by a single user: the more data an
individual can contribute, the more noise will need to be added to protect them.
While most existing analyses assume that the maximum contribution is known
and fixed in advance we argue that in practice there is a meaningful choice to be
made. On the one hand, if we allow users to contribute large amounts of data, we
may end up adding excessive noise to protect a few outliers. On the other hand,
limiting users to small contributions keeps noise levels low at the cost of potentially
discarding significant amounts of excess data, thus introducing bias. Here, we
characterize this tradeoff for an empirical risk minimization setting, showing that
in general there is a “sweet spot” that depends on measurable properties of the
dataset.

1 Introduction

Differential privacy [Dwork and Roth, 2014] has emerged as the standard framework for quantifying
information revealed by an algorithm about the users that supply its underlying data. A differentially
private algorithm guarantees that the presence of any single user in the dataset cannot be accurately
predicted from the algorithm’s output; this is achieved by perturbing the result using random noise.
While a variety of mechanisms for generating differentially private algorithms are now known—and,
increasingly, used in practice—significant challenges remain.

We focus here on a particular difficulty arising from the need to add noise sufficient to mask the
largest effect of any individual user. In typical applications, this maximum effect can be quite large
or potentially unbounded: even when typical users contribute only a modest amount of data, there
can be extreme outliers, and they must be protected too. Formally, the magnitude of the noise
usually must be calibrated to match the sensitivity of the analysis with respect to a single user. Most
existing work assumes that the sensitivity is fixed and known in advance; for instance, in differentially
private learning it is often assumed that each user can contribute only a single example [Chaudhuri
et al., 2011, Bassily et al., 2014]. In reality, of course, users often contribute many examples, with
different users contributing at vastly different rates; a single user might thus be responsible for a
disproportionately large fraction of the dataset.

When the sensitivity is high, practitioners sometimes compensate by raising ε, but this results
in reduced privacy protection. Here, we advocate a common alternative approach: limiting the
contributions of individual users in order to reduce the sensitivity. A fundamental question is how to
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choose a value for the maximum allowed contribution. If set too high, the noise level may be so great
that any utility in the result is lost. If set too low, we will be forced to discard large amounts of data;
this not only reduces our sample size, but also adds bias: users who contributed more than the limit
are now under-represented. As highly active users often behave quite differently from occasional
users, this is a non-trivial concern.

In this paper we investigate this bias-variance trade-off in detail, showing that in general there is an
intermediate contribution limit for which the expected error of differentially private empricial risk
minimization is optimal. That is, a biased training set can actually be preferable when the learning
algorithm is differentially private. We identify the relevant characteristics of the domain that control
this trade-off, showing that they are often intuitive and can plausibly be measured or approximated
using prior information.

2 Preliminaries

For our purposes, a dataset S ∈ S is a collection of contributions made by individual users. For
instance, a dataset might comprise a collection of training examples, each contributed by a particular
user. Each user might be able to contribute any number of examples.
Definition 1. We say two datasets S,S ′ ∈ S are neighbors and write S ∼ S ′ if one can be recovered
from the other by removing only the data corresponding to a single user.
Definition 2. Let H be a hypothesis space. An algorithm A : S→ H is said to be ε-differentially
private if, for every pair of neighboring datasets S ∼ S ′ and every U ⊆ H ,

P (A(S) ∈ U) ≤ eεP (A(S ′) ∈ U) .

The noise added by a differentially private algorithm is typically calibrated using sensitivity.
Definition 3. The (`1) sensitivity of a function f : S→ R is given by ∆f = supS∼S′ |f(S)−f(S ′)|.
Definition 4 (Laplace mechanism [Dwork et al., 2006]). Given a target function f : S→ R and a
fixed ε > 0, the Laplace mechanism Lapf,ε(S) returns f(S) + η, where η is a random noise variable
with density proportional to exp(−ε|η|/∆f ). The Laplace mechanism is ε-differentially private.

The Laplace mechanism applies for any real-valued function f . A somewhat more general technique
for constructing differentially private algorithms is the exponential mechanism [McSherry and Talwar,
2007]. The exponential mechanism is parameterized by a utility function u, where uS(h) ∈ R
denotes the utility of hypothesis h (which need not be numeric) on dataset S. Sensitivity of u is
measured with respect to the dataset, maximized over all hypotheses:

∆u = sup
h∈H

sup
S∼S′

|uS(h)− uS′(h)| . (1)

Definition 5 (Exponential mechanism). Let u be a utility function, and fix ε > 0. The exponential
mechanism Expu,ε(S) returns a hypothesis h ∈ H with probability proportional to exp

(
εuS(h)
2∆u

)
.

The exponential mechanism is also ε-differentially private.

In both mechanisms, sensitivity controls the noise level. In practice, it often is possible to explic-
itly limit sensitivity by introducing some bias into the utility function; here we are interested in
understanding that trade-off when the utility function is an empirical loss measure.

3 A Simple Example

Before proceeding to our main result, we illustrate the underlying concepts in a simpler setting.
Suppose that S is a collection of n nonnegative real numbers x1, x2, . . . , xn, each contributed by
a unique user. We would like to estimate the sum of the numbers in our dataset in a differentially
private way while minimizing the absolute error.

Naïvely, we might try to do this by applying the Laplace mechanism to the function µ(S) =
∑n
i=1 xi.

But there is a problem: since a single user can contribute an arbitrarily large value, the sensitivity
of µ, and therefore the scale of the noise, is infinite. To fix this, we will introduce a cap τ on the
maximum size of a user’s contribution, instead applying the Laplace mechanism to the function
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µτ (S) =
∑n
i=1 min(xi, τ). This will bias our estimated sum, of course, but it also reduces the

amount of added noise, as the sensitivity is now τ .

So how should we choose τ? We can decompose the expected error of the estimate µ̂ produced by
Lapµτ ,ε(S) into a variance term (due to the noise) and a bias term (due to the contribution limit):

Ê
µ
|µ̂− µ(S)| = ∆µτ /ε+ |µτ (S)− µ(S)| = τ/ε+

n∑
i=1

max(0, xi − τ) . (2)

The minimum is achieved when τ is equal to the d1/εeth largest value in S. Note that it does not
matter how large or small the contributions are above or below the cutoff. This is important given
that any information about the dataset used to determine τ must itself be computed privately. Luckily,
there are a variety of differentially private algorithms that can be applied to approximating quantiles
[Nissim et al., 2007, Dwork and Lei, 2009, Smith, 2011]. We will see in Section 4.1 that a similarly
intuitive statistic also appears in the more general setting.

4 A Generalization Bound

Consider an infinite set of users identified by the natural numbers. We consider a data generation
process that proceeds in rounds; on each round i ≤ n, a user Ji ∈ N is drawn from the fixed
participation distribution µ. Each user j ∈ N is equipped with its own data distribution Dj over
some example space Z = X × Y . The example zi = (xi, yi) generated on the ith round is an iid
sample from DJi . Let D denote the resulting mixture distribution, and Sn = {z1, · · · , zn} denote
a sample of size n. Observe that since draws from the participation and data distribution are each
independent, the zi are iid.

Let L : Y ×Y → R be a loss function measuring the quality of the predication made by a hypothesis
h ∈ H , and denote the true risk by L(h) = E(x,y)∼D[L(h(x), y)]. We assume that L is bounded,
and for simplicity that bound is ||L||∞ < 1.We are also interested in the the true risk on just the
ith user’s distribution, which we denote by Li(h) = E(x,y)∼Di [L(h(x), y)]. Given an arbitrary
dataset S containing examples from Z , the empirical loss of h with respect to S is defined as
LS(h) = 1

|S|
∑

(x,y)∈S L(h(x), y).

Algorithm. A differentially private learning algorithm maps Sn to a choice of hypothesis hpriv in
a manner that satisfies Definition 2. Our goal is to approximately optimize the expected loss L(h).
We will follow the work of Bassily et al. [2014] and use the exponential mechanism on the utility
function uS(h) = −LS(h). The authors show that this algorithm can be efficiently implemented and
that it has near optimal accuracy. Nevertheless, notice that since our model could in principle allow
for a user to contribute all n samples, the sensitivity of the utility function is ∆u = 1, rendering any
hypothesis output by this mechanism useless.

To reduce the impact of noise we cap the contribution of every user to τ . More precisely, given
n examples from D, let nj =

∑n
i=1 1[Ji = j] be the number of examples contributed by user j.

Let nτj = min{τ, nj} denote the number of examples contributed by user j after truncation, and
let nτ =

∑
j∈N nτj . Given a sample Sn, let Sτ contain, the first nτj examples in Sn generated by

user j. Our algorithm will sample h according to the exponential mechanism with utility function
uSτ = −LSτ .

Notice that since we are truncating each user contribution to τ the sensitivity of our utility function
∆uτ is given by τ

nτ
. The following lemma from [Bassily et al., 2014] provides a bound on the

empirical error of the hypothesis returned by our algorithm when H = Bd(0, 1), the ball in Rd of
radius 1. Similar guarantees can be given for hypothesis sets with a finite number of hypotheses, and
we conjecture that the extension to general VC classes has the same dependency on τ .

Lemma 1. Let hpriv ∈ Bd(0, 1) be a hypothesis sampled proportional to exp
(
− εLSτ (h)

2τ

)
, and hτ

the hypothesis minimizing LSτ . Then

E[LSτ (hpriv)] ≤ LSτ (hτ ) +
8τ

nτ ε

(
(d+ 1) log(3) + log

(1

δ

))
, (3)

where the expectation is taken only over the randomness of the exponential mechanism.

3



The lemma shows that in order for our hypothesis to be close to the optimal empirical risk minimizer
τ needs to be small. However, truncating the user contribution too much will bias the empirical error.

For interpretability, assume τ = γn for some γ ∈ [0, 1]. Let pj = P[J = j], where J follows the
participation distribution µ, and let qj = min{γ, pj}. Our first theorem bounds |LSτ (h) − L(h)|
uniformly for all h ∈ H . This bound includes a bias term introduced by the fact that we are
thresholding a user’s contribution by τ and consequently Sτ is not an iid sample from D. It also
contains a variance term introduced by both standard finite sample effects and also the fact that
thresholding results in further data loss as the sample size is decreased from n to nτ .
Theorem 1. Let δ > 0, and d = VCdim(H). Then with probability at least 1 − δ the following
inequality holds uniformly for all h ∈ H .

|LSτ (h)− L(h)| ≤ O

(
1

γ2

√
d log n

d

n

)
+
∣∣∣∑
j

( qj∑
qj
− pj

)
Lj(h)

∣∣∣ (4)

The proof is available in the supplement. Recall that instead of minimizing LSτ directly we are
sampling hpriv according to the exponential mechanism. Two applications of the previous theorem as
well as Lemma 1 allow us to state the following corollary for linear hypothesis in Bd(0, 1).

Corollary 1. Let δ > 0 and H = Bd(0, 1). Let η =
√

4 log(n/δ)
n . Let K(γ) = |{i : pi > γ + η}|;

then with probability at least 1− δ the following inequality holds uniformly for h ∈ H .

E[L(hpriv)] ≤ inf
h∈H
L(h) + sup

h∈H

∣∣∣∑
j

( qj∑
qj
− pj

)
Lj(h)

∣∣∣︸ ︷︷ ︸
bias term

+O

(
1

γ2

√
d log n

d

n

)
︸ ︷︷ ︸

finite sample variance

+O

(
d

K(γ)ε

)
︸ ︷︷ ︸
privacy variance

.

This bound shows that if the bias is small, depending on how fast K(γ) decreases, we can obtain
non-trivial error bounds. For instance, suppose the distribution of users is uniformly supported on
N = O(n1/6) users; then we can set γ ≈ 1/N , making K(γ) = N , and the previous bound becomes

E[L(hpriv)] ≤ inf
h∈H
L(h) + 2 sup

h∈H

∣∣∣∑
j

( qj∑
qj
− pj

)
Lj(h)

∣∣∣+O

(√
d log n

d

n1/3

)
+O

(
d

n1/6ε

)
.

4.1 Understanding the bias

The bias term
∣∣∣∑j

(
qj∑
j qj
− pj

)
Lj(h)

∣∣∣ does not depend on the sample size n and therefore does
not vanish as n→∞. The bias can be seen as the difference of expected losses under two different
distributions, allowing us to apply bounds from the domain adaptation literature, e.g., using the dH∆H -
distance [Blitzer et al., 2007] or the Y-discrepancy [Cortes et al., 2015]. One of the advantages of
using the dH∆H -distance is that it is estimatable from unlabeled samples.

However, ultimately we must trade off the bias error with the privacy variance, which is on the order
of O(γε ). To do so, we need to better understand how the bias varies as a function of γ; to that end we
provide upper bounds on the bias that depend on simple statistical properties of the data distribution.

Proposition 1. For all hypotheses h:
∣∣∣∑j

(
qj∑
j qj
− pj

)
Lj(h)

∣∣∣ ≤√ 1
2 log

(
1
γ

)
.

Using the fact that log(1/γ) ≤ 1−γ
γ we can conclude that truncating user contribution to τ = γn

induces a bias that is O(
√

1−γ
γ ). However, this can be overly pessimistic. In particular, if L(h) is

constant (that is, the expected error is the same for all users), then the bias is zero for any γ. This
suggests that the bias should be bounded in terms of a measure of the spread in the losses Lj(h).
Definition 6. For any hypothesis h, we define the variance of its loss across users by Var(h) =∑
j(Lj(h)− L(h))2pj .

Proposition 2. The following bound holds for every h:
∣∣∣∑j

(
qj∑
j qj
− pj

)
Lj(h)

∣∣∣ ≤√ 2Var(h)
γ
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Notice that this bound correctly captures the fact that if Lj(h) is constant then the bias is zero. It also
shows that if the distribution between users does not differ wildly, then by Corollary 1 we can achieve
non-trivial learning guarantees. Like the quantiles in Section 3, the variance of the losses across users
is an intuitive quantity that can plausibly be measured or approximated by prior knowledge.
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