
A General Approach to Adding Differential Privacy
to Iterative Training Procedures

H. Brendan McMahan
mcmahan@google.com

Galen Andrew
galenandrew@google.com

Abstract

In this work we address the practical challenges of training machine learning models
on privacy-sensitive datasets by introducing a modular approach that minimizes
changes to training algorithms, provides a variety of configuration strategies for the
privacy mechanism, and then isolates and simplifies the critical logic that computes
the final privacy guarantees. A key challenge is that training algorithms often
require estimating many different quantities (vectors) from the same set of examples
— for example, gradients of different layers in a deep learning architecture, as
well as metrics and batch normalization parameters. Each of these may have
different properties like dimensionality, magnitude, and tolerance to noise. By
extending previous work on the Moments Accountant for the subsampled Gaussian
mechanism, we can provide privacy for such heterogeneous sets of vectors, while
also structuring the approach to minimize software engineering challenges.

1 Introduction

There has been much work recently on integrating differential privacy (DP) techniques into iterative
training procedures like stochastic gradient descent [Chaudhuri et al., 2011, Bassily et al., 2014,
Abadi et al., 2016, Wu et al., 2017, Papernot et al., 2017]; for completeness we provide a formal
definition of DP in Appendix A. Although these works differ in the granularity of privacy guarantees
offered and the method of privacy accounting, most proposed approaches share the general idea of
iteratively computing a model update from training data and then applying the Gaussian mechanism
for differential privacy to the update before incorporating it into the model. Our goal in this work is
to decouple, to the extent possible, three aspects of integrating a privacy mechanism with the training
procedure:

a) the specification of the training procedure itself (e.g., stochastic gradient descent with batch
normalization and simultaneous collection of accuracy metrics and training data statistics),

b) the selection and configuration of the privacy mechanisms to apply to each of the aggregates
collected (model gradients, batch normalization weight updates, and metrics), and

c) the accounting procedure used to compute a final (ε, δ)-DP guarantee.

This separation is critical: the person implementing a) is likely not a DP expert, and this code typically
already exists; there are many configuration options for b), which will likely require experimentation,
and this configuration logic may become complex; thus isolating the key privacy calculations in c)
and keeping them as simple (and well tested) as possible prevents bugs in a) or b) from introducing
errors in the calculation of the actual privacy achieved.

While model training is our primary motivation, the approach is applicable to any iterative procedure
that fits the following template. We have a database with n records. A record might correspond to a
single training example, a “microbatch” of examples, or all of the data from a particular user or entity
(e.g., to achieve user-level DP as in McMahan et al. [2018]). On each round, a random subset of
records (a sample) is selected and the training procedure consumes the results of a number of vector

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

Per-example SGD Microbatch SGD Federated learning
(user-level DP)

record gradient on one example average gradient on one
microbatch (~10 examples)

model update from one
user

sample minibatch (~100 exam-
ples)

minibatch (~10 microbatches
containing 100 examples)

set of participating user
devices for the round

Table 1: Defining record and sample in different training contexts.

queries over that sample; see Table 1. Such vector queries may include the average gradient for each
layer, updates to batch-normalization parameters, or the average value for different training accuracy
metrics. We describe a general approach to allocating a privacy budget across each of these queries
and analyzing the privacy cost of the complete mechanism, all respecting the decoupling of concerns
described earlier. Our analysis builds on the Moments Accountant approach of Abadi et al. [2016],
which applies to a single vector query per round, and generalizes the extension of McMahan et al.
[2018] to multi-vector queries.

We focus on the following basic building block for a single vector. Suppose we have a database
X with n records consisting of vectors xi ∈ RD and we are interested in estimating the average1

1
n

∑
i x

i. Given a selection probability q, clipping threshold S, and noise scale z, the procedure is:

1. Select a subset of the records R ⊆ [1, . . . , n] by choosing each record with probability q.
2. Clip each xi for i ∈ R to have maximum L2 norm S using πS(x) = x ·min (1, S/‖x‖).
3. Output x̂ = 1

qn

(∑
i∈R πS

(
xi
)
+N (0;σ2I)

)
where σ = zS.

The quantity
∑
i∈R πS

(
xi
)
+ N (0;σ2I) is the output of the Gaussian mechanism for sums. As

E[|R|] = qn, scaling it by 1/qn produces an unbiased estimate of the average. The noise scale
z ≡ σ/S (the ratio of the noise to the L2-sensitivity of the query) acts as a knob to trade off privacy
vs. utility. If we choose z = 1

ε

√
2 ln 1.25/δ, the mechanism is (qε, qδ)-differentially private with

respect to the full database [Beimel et al., 2014, Dwork and Roth, 2014]. Importantly, the privacy
cost of this mechanism is fully specified by q together with the privacy tuple (S, σ), where S is an
upper bound on the L2 norm of the vectors being summed, and σ is the standard deviation of the
noise added to the sum.

We generalize the above procedure to the case where each record corresponds to a collection of
vectors. We still do the sampling step (1) only once, but we estimate the average of each of the vectors
separately, potentially with different clipping thresholds and noise scales. Let (v1, . . . , vm) be the
total set of vectors for which averages are to be estimated privately. In general, we may partition
this set of m vectors into multiple groups, e.g., fully connected layers vs. convolutional layers vs.
metrics. We assume the user (that is, the person using the privacy tools defined here) has identified
the relevant set of groups whose averages are needed in the training procedure. For each of these, she
needs to specify a privacy mechanism together with some hyperparameters. We first describe the
privacy mechanisms that can be applied to individual vectors or groups of vectors, then show how the
privacy cost of the full collection of mechanisms can be calculated, and finally propose strategies for
choosing the parameters to achieve the desired privacy versus utility tradeoff.

2 Privacy mechanisms for a group of vectors

In this section, we describe two strategies that can be applied to a single group of vectors, WLOG the
first k, (v1, . . . , vk), for k ≤ m; when k = 1, the two mechanisms described are identical.

Separate clipping and noise parameters. This strategy essentially treats the whole group as a
single concatenated vector v = (v1, . . . , vk). The user provides Sg, a clipping parameter, and σg,
a noise parameter. For now, assume both of these parameters are simply chosen so as to provide

1For simplicity, we focus on unweighted average queries, for example to compute average gradient on a
batch of examples; the generalization to weighted average and vector sum queries is straightforward. We also
restrict attention to the fixed expected denominator ff of McMahan et al. [2018]; extension to other estimators
for averages like their fc is straightforward.

2

reasonable utility for the resulting average; we will discuss strategies for choosing these parameters
in detail in Section 4. The output of the mechanism is

v̂j =
1

qn

∑
i∈R

πSg

(
vi
)
j
+N (0;σ2

gI) =
1

qn

(∑
i∈R

πSg

(
vi
)
+N (0; σ̃2

gI)

)
j

,

where σ̃g = qnσg. The final expression shows that the mechanism is equivalent to the Gaussian
mechanism for sums with privacy tuple (Sg, σ̃g). Applying this mechanism with Sg = S∗ to all m
vectors recovers the “flat clipping” approach of McMahan et al. [2018], and applying this mechanism
separately to each of the vectors with Sg = S∗/

√
m recovers their “per-layer clipping” approach

(where S∗ is the total L2 bound). Another reasonable strategy that takes into account dimensionality
is to apply the mechanism separately with Sg = S∗/

√
dg/D where dg is the dimensionality of vg .

Joint clipping. Here we introduce a new mechanism that allows us to clip less aggressively than
applying the previous strategy to each vector individually, while still letting different vectors live on
different multiplicative scales. The user supplies as input scale parameters α1, . . . αk for v1, . . . , vk,
an overall σg the whole group, and a total clipping parameter Sg ∈

[
1,
√
k
]
; noise αjσg is added

to the estimate for vector vj . The strategy first does a pre-processing step via the scaling operator
s(v;α1:k) = (v1/α1, . . . , vk/αk). Observe that if ∀j, ‖vj‖ ≤ αj , then ‖s(v;α1:k)‖ ≤

√
k, but it

may typically be less; thus Sg =
√
k is a conservative default choice. The mechanism’s output then

scales the vectors back by the αj factor in post-processing:

v̂j =
1

qn

∑
i∈R

αjπSg

(
s(vi;α1:k)

)
j
+N

(
0; (αjσg)

2I
)

=
αj
qn

(∑
i∈R

πSg

(
s(vi;α1:k)

)
+N

(
0; σ̃2

gI
))

j

,

where again σ̃g = qnσg. The final expression shows the output can be written as a post-processing of
the subsampled Gaussian mechanism for sums with privacy tuple (Sg, σ̃g). Note that if no clipping
happens then αjπSg

(
s(vi;α1:k)

)
j
= vij for all j.

To see where this mechanism might be superior to the first, suppose v1 and v2 have ‖v1‖ ≤ 1 and
‖v2‖ ≤ 100, and suppose they can tolerate noise standard deviations of 0.01 and 1 respectively.
Additionally, assume it is known that either vi1 or vi2 will be zero for any record i. We could clip
these separately, but this ignores the (useful) side information that one is always zero. On the other
hand, if we treat them as a single group, we cannot take into the account the fact they are on very
different scales; in particular, we must pick a single noise value which will either be insufficient to
add privacy for v2, or will completely obscure the signal in v1. The joint mechanism proposed here
lets us directly handle this situation using α1 = 1, α2 = 100, σg = 0.01, and S = 1.

3 Composing privacy guarantees for multiple vector groups

Now, suppose we have partitioned the m vectors into G groups, and selected a privacy mechanism
for each one, producing privacy tuples (Sg, σ̃g) for g ∈ {1, . . . , G}. From a privacy accounting point
of view, each of these mechanisms is equivalent to running a Gaussian sum query on vectors wg with
‖wg‖ ≤ Sg and then adding noise σ̃g to the final sum. We now demonstrate a transformation that lets
us analyze this composite mechanism as a single Gaussian sum query on the sample.

First, we scale each vector s(w; σ̃1:G) = (w1

σ̃1
, . . . , wG

σ̃G
), so ‖s(w; σ̃1:G)‖ ≤ S∗ ≡

√∑
g (Sg/σ̃g)

2
.

Now, we imagine a single Gaussian sum query with noise standard deviation σ = 1, and output the
estimate after rescaling by the σ̃g factors. This is equivalent since

ŵg =
1

qn

(∑
i∈R

wig +N (0; σ̃2
gI)

)
=
σ̃g
qn

(∑
i∈R

s(wi; σ̃1:G) +N (0; I)

)
g

. (1)

The final expression is a simple post-processing on the output of a single Gaussian sum query with
parameters (S∗, σ = 1). Thus, we can apply the moments accountant to bound the privacy loss of
iterative applications of this mechanism.

3

4 Hyperparameter selection strategies

Here we consider selecting hyperparameters q, Sg, and σg to achieve a particular privacy vs. utility
tradeoff. Recall for both mechanisms, σ̃g = qnσg , so the key quantity is

z =
1

S∗
=

(∑
g

(Sg/σ̃g)
2

)−1/2
= qn

(∑
g

(Sg/σg)
2

)−1/2
.

Typically, a value of z ≈ 1 will provide a reasonable privacy guarantee. If z is too small for the
desired level of privacy, the user has several knobs available: clip more aggressively by decreasing
the Sg’s; noise more aggressively by scaling up the σg’s; or increasing q. When datasets are large
and the additional computational cost of processing larger samples R is affordable, this last approach
is generally preferable, as observed by McMahan et al. [2018]. If additionally the total number of
iterations T is known, then since the privacy cost scales monotonically with any of these adjustments
to z, a binary search can be performed using the moments accountant repeatedly with different
parameters to find e.g. the precise value of q needed to achieve a particular (ε, δ)-DP guarantee.

Choosing σg and Sg . Typical approaches to setting Sg include: 1) using an a priori upper bound
on the L2 norm; 2) choosing Sg so that “few” vectors are clipped; or 3) running parameter tuning
grids to find a value of Sg that does not reduce utility (e.g., the accuracy of the model) by too much.
If private data is used in 2) or 3), the privacy cost of this should be accounted for. Similar strategies
can be used to choose σg , e.g., selecting a value that will introduce an a priori acceptable amount of
error, or more likely for model training, running experiments to find the largest amount of noise that
does not slow the training procedure.

In some cases one may have bounds Sg on the norms of G groups plus an overall target value of z,
which needs to be distributed across multiple groups. To achieve proportional noise, where σ̃g ∝ Sg
for all g, we can use σ̃g = z

√
GSg. Another reasonable alternative, dimensionality adjusted noise

assigns noise proportional to the maximum root mean squared value of the components of wg given
its bound and its dimensionality: σ̃g = z

√
D/dgSg , where dg is the dimensionality of group g.

5 Privacy ledger

In principle, privacy accounting (via, e.g. the moments accountant) could be done in tandem with calls
to the mechanism to keep an online estimate of the (ε, δ) privacy guarantee. However we advocate a
different approach which cleanly separates concerns b) and c) from the introduction. We maintain a
privacy ledger and record two types of events: sampling events, which record that a set R of records
has been drawn using parameters q and n, and sum query events, which record that a Gaussian sum
query has been performed over some group of vectors with privacy tuple (Sg, σ̃g). Then the privacy
accountant can process the ledger post hoc to produce a privacy guarantee, first converting each group
of one sampling event plus some sum query events to an equivalent single sum query event with
parameters (S∗, σ = 1) using Equation (1).

There are two main advantages of this approach. First, bugs in the hyperparameter selection strategy
code cannot affect the privacy estimate. Second, it allows the privacy accounting mechanism to be
changed and the ledger reprocessed if, for example, a tighter bound on the privacy loss is discovered
after the data has been processed.

6 Conclusion

We have shown how the Gaussian mechanism can be applied to vectors of different types with
different norm bounds and noise standard deviations, enabling training over heterogeneous parameter
vectors, as well as simultaneous privacy-preserving estimation of other statistics such as classifier
accuracy, or the number of instances in each class. By implementing iterative training algorithms
in terms of a series of Gaussian sum queries and then recording for each query privacy events to a
ledger to be processed by a privacy accountant, we separate the three major concerns of implementing
privacy-preserving iterative training procedures while allowing flexibility in the specification of
clipping strategy and noise allocation.

4

References
Martin Abadi, Andy Chu, Ian Goodfellow, Brendan McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In 23rd ACM Conference on Computer and Communications Security
(ACM CCS), 2016.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient algorithms
and tight error bounds. In Proceedings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, FOCS ’14, pages 464–473, Washington, DC, USA, 2014. IEEE Computer Society. ISBN 978-1-
4799-6517-5. doi: 10.1109/FOCS.2014.56. URL http://dx.doi.org/10.1109/FOCS.2014.56.

Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample complexity
for private learning and private data release. Machine Learning, 94(3):401–437, 2014. doi: 10.1007/
s10994-013-5404-1. URL http://dx.doi.org/10.1007/s10994-013-5404-1.

Kamalika Chaudhuri, Claire Monteleoni, and Anand D. Sarwate. Differentially private empirical risk minimiza-
tion. J. Mach. Learn. Res., 12, July 2011.

Cynthia Dwork and Aaron Roth. The Algorithmic Foundations of Differential Privacy. Foundations and Trends
in Theoretical Computer Science. Now Publishers, 2014.

Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private recurrent
language models. In International Conference on Learning Representations (ICLR), 2018. URL https:
//openreview.net/pdf?id=BJ0hF1Z0b.

Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-supervised
knowledge transfer for deep learning from private training data. In Proceedings of the International Conference
on Learning Representations, 2017. URL https://arxiv.org/abs/1610.05755.

Xi Wu, Fengan Li, Arun Kumar, Kamalika Chaudhuri, Somesh Jha, and Jeffrey F. Naughton. Bolt-on differential
privacy for scalable stochastic gradient descent-based analytics. In Proceedings of SIGMOD, 2017.

A Differential Privacy

The formal definition of (ε, δ)-differential privacy is provided here for reference:
Definition 1. A randomized mechanismM : D 7→ R satisfies (ε, δ)-differential privacy if for any
two adjacent datasets X,X ′ ∈ D and for any measurable subset of outputs Y ⊆ R it holds that
Pr [M(X) ∈ Y] ≤ eε Pr [M(X ′) ∈ Y] + δ.

The interpretation of adjacent datasets above determines the unit of information that is protected
by the algorithm: a differentially private mechanism guarantees that two datasets differing only by
addition or removal of a single unit produce outputs that are nearly indistinguishable. For machine
learning applications the two most common cases are example-level privacy (e.g., Chaudhuri et al.
[2011], Bassily et al. [2014], Abadi et al. [2016], Wu et al. [2017], Papernot et al. [2017]), in which
an adversary cannot tell with high confidence from the learned model parameters whether a given
example was present in the training set, or user-level privacy (e.g., McMahan et al. [2018]) in which
adding or removing an entire user’s data from the training set should not substantially impact the
learned model.2

2It is also possible to consider X and X ′ to be adjacent if they differ by replacing a training example (or an
entire user’s data) with another, which would increase the ε by a factor of two.

5

http://dx.doi.org/10.1109/FOCS.2014.56
http://dx.doi.org/10.1007/s10994-013-5404-1
https://openreview.net/pdf?id=BJ0hF1Z0b
https://openreview.net/pdf?id=BJ0hF1Z0b
https://arxiv.org/abs/1610.05755

	Introduction
	Privacy mechanisms for a group of vectors
	Composing privacy guarantees for multiple vector groups
	Hyperparameter selection strategies
	Privacy ledger
	Conclusion
	Differential Privacy

