
Appendix A: Differential Privacy Background

Here we provide background information on the definition of algorithmic privacy and a composition method that we
will use in our algorithm, as well as the general formulation of the MAC algorithm.

Differential privacy

Differential privacy (DP) is a formal definition of the privacy properties of data analysis algorithms [5]. Given an
algorithmM and neighbouring datasets D, D′ differing by a single entry. Here, we focus on the inclusion-exclusion1

case, i.e., the dataset D′ is obtained by excluding one datapoint from the dataset D. The privacy loss random variable of
an outcome o is L(o) = log

Pr(M(D)=o)

Pr(M(D′)=o)
. The mechanismM is called ε-DP if and only if |L(o)| ≤ ε,∀o. A weaker version

of the above is (ε, δ)-DP, if and only if |L(o)| ≤ ε, with probability at least 1 − δ. What the definition states is that a
single individual’s participation in the data do not change the output probabilities by much, which limits the amount of
information that the algorithm reveals about any one individual.

The most common form of designing differentially private algorithms is by adding noise to a quantity of interest,
e.g., a deterministic function h : D 7→ Rp computed on sensitive data D. See [5] and [17] for more forms of designing
differentially-private algorithms. For privatizing h, one could use the Gaussian mechanism [16] which adds noise to the
function, where the noise is calibrated to h’s sensitivity, Sh, defined by the maximum difference in terms of L2-norm,
‖h(D)− h(D′)‖2, h̃(D) = h(D) +N (0, S2

hσ
2Ip), where N (0, S2

hσ
2Ip) means the Gaussian distribution with mean 0 and

covariance S2
hσ

2Ip. The perturbed function h̃(D) is (ε, δ)-DP, where σ ≥
√

2 log(1.25/δ)/ε. In this paper, we use the
Gaussian mechanism to achieve differentially private network weights. Next, we describe how the cumulative privacy
loss is calculated when we use the Gaussian mechanism repeatedly during training.

The moments accountant

In the moments accountant, a cumulative privacy loss is calculated by bounding the moments of L(o), where the λ-th mo-
ment is defined as the log of the moment generating function evaluated at λ [6]: αM(λ;D,D′) = logEo∼M(D)

[
eλL

(o)
]
. By

taking the maximum over the neighbouring datasets, we obtain the worst case λ-th momentαM(λ) = maxD,D′ αM(λ;D,D′),
where the form of αM(λ) is determined by the mechanism of choice. The moments accountant compute αM(λ) at each
step. Due to the composability theorem which states that the λ-th moment composes linearly (See the composability
theorem: Theorem 2.1 in [6] when independent noise is added in each step, we can simply sum each upper bound
on αMj

to obtain an upper bound on the total λ-th moment after T compositions, αM(λ) ≤
∑T
j=1 αMj

(λ). Once the
moment bound is computed, we can convert the λ-th moment to the (ε, δ)-DP, guarantee by, δ = minλ exp [αM(λ)− λε],
for any ε > 0. See Appendix A in [6] for the proof.

1This is for using the moments accountant method when calculating the cumulative privacy loss.
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Appendix B: Experiment Results

DP-SGD DP-CDBN DP-MAC
ε = 0.5 0.90 0.92 0.90

# epochs 16 162 10
ε = 2 0.95 0.95 0.95

# epochs 120 162 30
ε = 8 0.97 0.97

# epochs 700 30

(a) Test classification accuracy on MNIST

DP-SGD DP-MAC
ε = 1 11.8 12.7

ε = 2 9.6 10.9

ε = 4 7.9 9.6

ε = 8 6.4 8.4

ε = ∞ 3.6 4.4

(b) Test reconstruction MSE on USPS

Table 1: Test performance of DP-MAC compared to [6] DP-SGD and DP-CDBN [11] at δ = 10−5

DP-MAC Classifier DP-MAC Autoencoder DP-SGD Autoencoder
layer-sizes 300 300-100-20-100-300-256 300-100-20-100-300-256
batch size 1000 500 (250 if ε ≤ 2) 500 (250 if ε ≤ 2)
train epochs 30 (10 if ε = 0.5) 50 100
optimizer Adam Adam SGD
W learning rate 0.01 (0.03 if ε = 0.5) 0.003 0.03
z learning rate 0.003 0.001
W lr-decay 0.95 (0.7 if ε = 0.5) 0.97 100 (50 if ε ≤ 2)
z-steps 30 30
W-steps 1 1
Θ∂T 0.3 0.001
Θg 0.01
σ values 1.0, 2.8, 8.0 1.8, 3.1, 4.1, 7.8 2.4, 4.3, 5.7, 11.0
σDP−PCA 4.0, 8.0, 16.0

Table 2: Training parameters choices for both DP-MAC experiments and the DP-SGD autoencoder comparison
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Appendix C: Differences from the Previous Version

The previous version of this paper contained an error in the implementation which mistakenly lowered the necessary
amount of noise for a given privacy guarantee and, as a result reported wrong test results. In this version we have
corrected this error and made a number of additional changes which are listed below:

• Gradient update

– Fixed faulty gradient computation, which had reduced effective noise by up to 99% during training.

– Improved clipping sensitivity by clipping ∂T rather than the norms of the coefficients bk,Ck.

– Reduced analytic sensitivity by 50% by excluding 1
2S term from coefficients and making better use of

inclusion/exclusion DP.

• Experiments

– Removed histogram-based layer-wise clipping bound search, which had turned out to be costly in terms of
the privacy budget and yield relatively little improvement. Instead all layers now use the same bound.

– Classifier experiment now uses DP-PCA to reduce input dimensionality as in [6]. overall results stay roughly
the same.

– Autoencoder: Worse results than DP-SGD, likely due to vanishing gradient issues.

– Replaced softplus activations with ReLUs.

– Significantly increased batch sizes.

• Notation

– Denoted Clipping thresholds as Θ to avoid confusion with Tnkh terms.

– Defined coefficients ak,bk,Ck excluding 1
2S term due to changes in sensitivity analysis.
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Appendix D: Additional Figures

Figure 2: Classifier training and test errors. (± 1 stdev. of the latter) averaged over 10 runs each.
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Figure 3: The input and output objective functions (black) are well approximated by the 2nd-order approximations (red).
In both cases, approximation is made at 0, where the true w at the input layer is −0.7, and 0.7 at the output layer. The
blue crosses depict additive noise centered around the approximated loss and the noise variance is determined by the
sensitivities of the coefficients and privacy parameter σ2.

9



Figure 4: Learned significant features for labels 0,3,5,6,8 respectively. The non-private features show higher contrast and
more characteristics in the high frequencies, whereas the private features become smoothed out and lose contrast.

Algorithm 2 DP-MAC with learning Tbk

Require: D, T , σ2, σ2
hist, q, initial threshold Tbk

Ensure: (ε, δ)-DP weights {Wk}K+1
k=1

1. Pre-training using DP-MAC (Algo. 1)
2. DP-histogram release which determines Tbk
3. DP-MAC (Algo. 1) training using learned Tbk

Appendix E: sensitivity of ak
We are using a few assumptions and facts to derive sensitivities below.

• ‖zk,s‖2 ≤ Tz for a predefined threshold Tz for all k, s.

• Due to Cauchy-Schwarz inequality: wT
khzk−1,s ≤ ‖wkh‖2Tz

• Using a monotonic nonlinearity (e.g., softplus): f(wT
khzk−1,S) ≤ f(‖wkh‖2Tz) and f ′(wT

khzk−1,S) ≤ f ′(‖wkh‖2Tz)

• For softplus, 0 < f ′(wT
khzk−1,S) ≤ f ′(‖wkh‖2Tz) ≤ 1 and 0 < f

′′
(wT

khzk−1,s) ≤ 1
4

• ‖a‖2 ≤ ‖a‖1 ≤ ‖a‖2
√
D for a ∈ RD

• Direct application of above : |
∑Dk

out

h=1 zkh,s| ≤
∑Dk

out

h=1 |zkh,s| = ‖zk,s|>1| ≤ Tz
√
Dk
out

Denote
αŵkh

:= f(‖ŵkh‖2Tz)

βŵkh
:= f ′(‖ŵkh‖2Tz)

which we will further denote as vectors αŵk
,βŵk

.
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Without loss of generality, we further assume that (1): the neighbouring datasets are in the form ofD = {D′, (xS ,yS)}.

∆ak = max
|D\D′|=1

|ak(D)− ak(D′)|,

= max
|D\D′|=1

|
Dk

out∑
h=1

{
S∑
s=1

(Tn(ŵkh)− ŵkh
>∂Tskh + 1

2ŵkh
>∂2Tskhŵkh)−

S−1∑
s=1

(Tn(ŵkh)− ŵkh
>∂Tskh + 1

2ŵkh
>∂2Tskhŵkh)}|

= max
|D\D′|=1

|
Dk

out∑
h=1

(TS(ŵkh)− ŵkh
>∂TSkh + 1

2ŵkh
>∂2TSkhŵkh)|

Now the sensitivity can be divided into three terms due to triangle inequality as

∆ak ≤ max
|D\D′|=1

∣∣∣∣∣∣
Dk

out∑
h=1

TS(ŵkh)

∣∣∣∣∣∣︸ ︷︷ ︸
∆ak1

+ max
|D\D′|=1

∣∣∣∣∣∣
Dk

out∑
h=1

ŵkh
>∂TSkh

∣∣∣∣∣∣︸ ︷︷ ︸
∆ak2

+ max
|D\D′|=1

∣∣∣∣∣∣
Dk

out∑
h=1

1
2ŵkh

>∂2TSkhŵkh

∣∣∣∣∣∣︸ ︷︷ ︸
∆ak3

.

We compute the sensitivity of each of these terms below. The sensitivity of ak1 is given by

∆ak1 = max
zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

z2
kh,S − 2zkh,Sf(ŵT

khzk−1,S) +
(
f(ŵT

khzk−1,S)
)2∣∣∣∣∣∣

≤ max
zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

z2
kh,S

∣∣∣∣∣∣+

∣∣∣∣∣∣
Dk

out∑
h=1

2zkh,Sf(ŵT
khzk−1,S)

∣∣∣∣∣∣+

∣∣∣∣∣∣
Dk

out∑
h=1

(
f(ŵT

khzk−1,S)
)2∣∣∣∣∣∣

≤
(
T 2
z + 2Tz‖αŵk

‖2 + ‖βŵk
‖22
)

The sensitivity of ak2 is given by

∆ak2 = max
zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

(
−2zkh,Sf

′(ŵT
khzk−1,S) + 2f(ŵT

khzk−1,S)f ′(ŵT
khzk−1,S)

)
ŵT
khzk−1,S

∣∣∣∣∣∣
≤ max

zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

(
2zkh,Sf

′(ŵT
khzk−1,S)

)
ŵT
khzk−1,S

∣∣∣∣∣∣+

∣∣∣∣∣∣
Dk

out∑
h=1

(
2f(ŵT

khzk−1,S)f ′(ŵT
khzk−1,S)

)
ŵT
khzk−1,S

∣∣∣∣∣∣
≤ max

zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

‖2zkh,Sf ′(ŵT
khzk−1,S)ŵkh‖2 · ‖zk−1,S‖2

∣∣∣∣∣∣+

∣∣∣∣∣∣
Dk

out∑
h=1

‖2f(ŵT
khzk−1,S)f ′(ŵT

khzk−1,S)ŵkh‖2 · ‖zk−1,S‖2

∣∣∣∣∣∣
≤ 2Tz max

zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

|zkh,S | · ‖f ′(ŵT
khzk−1,S)ŵkh‖2

∣∣∣∣∣∣+

∣∣∣∣∣∣
Dk

out∑
h=1

‖f(ŵT
khzk−1,S)f ′(ŵT

khzk−1,S)ŵkh‖2

∣∣∣∣∣∣


≤ 2Tz

Tz ·
Dk

out∑
h=1

β2
ŵkh
‖wkh‖22

1/2

+

Dk
out∑
h=1

|αŵkh
βŵkh

| · ‖ŵkh‖2

 ,

11



The sensitivity of ak3 is given by

∆ak3 = max
zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

(
−zkh,Sf ′′(ŵT

khzk−1,S) +
(
f ′(ŵT

khzk−1,S)
)2

+ f(ŵT
khzk−1,S)f ′′(ŵT

khzk−1,S)
) (

ŵT
khzk−1,S

)2∣∣∣∣∣∣
≤ max

zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

(
zkh,Sf

′′(ŵT
khzk−1,S)

) (
ŵT
khzk−1,S

)2∣∣∣∣∣∣+

∣∣∣∣∣∣
Dk

out∑
h=1

((
f ′(ŵT

khzk−1,S)
)2) (

ŵT
khzk−1,S

)2∣∣∣∣∣∣
+

∣∣∣∣∣∣
Dk

out∑
h=1

(
f(ŵT

khzk−1,S)f ′′(ŵT
khzk−1,S)

) (
ŵT
khzk−1,S

)2∣∣∣∣∣∣
≤ max

zk,S ,zk−1,S

∣∣∣∣∣∣
Dk

out∑
h=1

zkh,S · f ′′(ŵT
khzk−1,S) · ‖ŵkh‖22 · ‖zk−1,S‖22

∣∣∣∣∣∣+

∣∣∣∣∣∣
Dk

out∑
h=1

(
f ′(ŵT

khzk−1,S)
)2 · ‖ŵkh‖22 · ‖zk−1,S‖22

∣∣∣∣∣∣
+

∣∣∣∣∣∣
Dk

out∑
h=1

f(ŵT
khzk−1,S)f ′′(ŵT

khzk−1,S) · ‖ŵkh‖22 · ‖zk−1,S‖22

∣∣∣∣∣∣
≤ T 2

z max
zk,S

Dk
out∑
h=1

1/4 · |zkh,S | · ‖ŵkh‖22 +

Dk
out∑
h=1

(βŵkh
)
2 · ‖ŵkh‖22 +

Dk
out∑
h=1

1/4αŵkh
· ‖ŵkh‖22


≤ T 2

z

4

Tz
Dk

out∑
h=1

(
‖wkh‖22

)21/2

+

Dk
out∑
h=1

(
4 (βŵkh

)
2

+ αŵkh

)
· ‖ŵkh‖22



Appendix F: sensitivity of bk

∆bk = max
|D\D′|=1

‖bk(D)− bk(D′)‖F = max
|D\D′|=1

Dk
out∑
h=1

‖bkh(D)− bkh(D′)‖22


1
2

,

≤ max
zk,Szk−1,S ,z′k,S ,z

′
k−1,S

Dk
out∑
h=1

‖(∂TS(ŵkh)− ∂2TS(ŵkh)ŵkh)‖22


1
2

≤ max
zk,Szk−1,S ,z′k,S ,z

′
k−1,S

Dk
out∑
h=1

‖∂TSkh‖22 +

Dk
out∑
h=1

‖∂2TSkhŵkh‖22


1
2

≤ (∆bk1 + ∆bk2)
1
2 ,
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∆bk1 = max
zk,S ,zk−1,S

Dk
out∑
h=1

‖
(
−2zkh,Sf

′(ŵT
khzk−1,S) + 2f(ŵT

khzk−1,S)f ′(ŵT
khzk−1,S)

)
zk−1,S‖22

≤ 2T 2
z max

zk,Szk−1,S

Dk
out∑
h=1

|(f(ŵT
khzk−1,S)− zkh,S)βŵkh

|2

≤ 2T 2
z max

zk,Szk−1,S

Dk
out∑
h=1

|αŵkh
βŵkh

− zkh,Sβŵkh
|2

≤ 2T 2
z max

zk,Szk−1,S

Dk
out∑
h=1

(
α2
ŵkh

β2
ŵkh

+ 2αŵkh
β2
ŵkh
|zkh,S |+ z2

kh,Sβ
2
ŵkh

)
≤ 2T 2

z

||αŵk
� βŵk

||22 + 2 min

Tz Dk
out∑
h=1

αŵkh
, max
zk,Szk−1,S

max
i

(
αŵki

β2
ŵki

)Dk
out∑
h=1

zkh,S

+ T 2
z

 , since z may be negative

≤ 2T 2
z

||αŵk
� βŵk

||22 + 2Tz min

Dk
out∑
h=1

αŵkh
,
√
Dk
out max

i

(
αŵki

β2
ŵki

)+ T 2
z


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∆bk2 = max
zk,S ,zk−1,S

Dk
out∑
h=1

‖
((
− 2zkh,Sf

′′(ŵT
khzk−1,S) + 2

(
f ′(ŵT

khzk−1,S)
)2

+ 2f(ŵT
khzk−1,S)f ′′(ŵT

khzk−1,S)
)
zk−1,Sz

T
k−1,S

)
ŵkh‖22

≤ 2 max
zk,S ,zk−1,S

Dk
out∑
h=1

‖zkh,Sf ′′(ŵT
khzk−1,S)zk−1,Sz

T
k−1,Sŵkh‖22 + ‖

(
f ′(ŵT

khzk−1,S)
)2

zk−1,Sz
T
k−1,Sŵkh‖22

+ ‖f(ŵT
khzk−1,S)f ′′(ŵT

khzk−1,S)zk−1,Sz
T
k−1,Sŵkh‖22

≤ 2 max
zk,S ,zk−1,S

Dk
out∑
h=1

‖1/4 · zkh,Szk−1,Sz
T
k−1,Sŵkh‖22

+ ‖
((
f ′(ŵT

khzk−1,S)
)2

+ 1/4 · f(ŵT
khzk−1,S)

)
zk−1,Sz

T
k−1,Sŵkh‖22

≤ 2 max
zk,S ,zk−1,S

Dk
out∑
h=1

|1/4 · zkh,S |2 · T 2
z · T 2

z ‖ŵkh‖22

+ ‖
((
f ′(ŵT

khzk−1,S)
)2

+ 1/4 · f(ŵT
khzk−1,S)

)
ŵkh‖22 · T 2

z · T 2
z

≤ T 4
z

8

T 2
z ‖wk‖2F +

Dk
out∑
h=1

‖
(
4β2

ŵkh
+ αŵkh

)
ŵkh‖22



Appendix G: sensitivity of Ck

The sensitivity of ∆Ck is given by

∆Ck = max
|D\D′|=1

‖Ck(D)−Ck(D′)‖F ,

= max
|D\D′|=1

Dk
out∑
h=1

‖Ckh(D)−Ckh(D′)‖2F


1
2

where

Ckh(D) =

S∑
s=1

1
2∂

2Tskh,

=

S∑
s=1

[
−2zkh,sf

′′(ŵkh
>zk−1,s) + 2{f ′(ŵkh

>zk−1,s)}2 + 2f(ŵkh
>zk−1,s)f

′′(ŵkh
>zk−1,s)

]
zk−1,szk−1,s

>.
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Due to the triangle inequality,

∆Ck ≤ max
zk,S ,zk−1,S

Dk
out∑
h=1

‖∆Ckh‖2F

1/2

= max
zk,S ,zk−1,S

Dk
out∑
h=1

‖
(
− 2zkh,Sf

′′(ŵT
khzk−1,S) + 2

(
f ′(ŵT

khzk−1,S)
)2

+ 2f(ŵT
khzk−1,S)f ′′(ŵT

khzk−1,S)
)
zk−1,Sz

T
k−1,S‖2F

1/2

≤ 2T 2
z max

zk,S ,zk−1,S

Dk
out∑
h=1

|zkh,Sf ′′(ŵT
khzk−1,S)|2 + |

(
f ′(ŵT

khzk−1,S)
)2

+ f(ŵT
khzk−1,S)f ′′(ŵT

khzk−1,S)|2
1/2

≤ T 2
z

2

(
T 2
z + ‖4 (βŵk

)
2

+ αŵk
‖22
)1/2

Appendix H: sensitivity of coefficients in the output layer objective function

∆ao ≤
1

2S
max
zK,S

∣∣∣∣∣∣
Do

out∑
h=1

f(ŵT
K+1hzK,S)−wT

K+1hf
′(ŵT

K+1hzK,S)zK,S + 1/2wT
K+1hf

′′(ŵT
K+1hzK,S)zK,Sz

T
K,SwK+1h

∣∣∣∣∣∣
≤ 1

2S
max
zK,S

Do
out∑
h=1

∣∣f(ŵT
K+1hzK,S)

∣∣+

Do
out∑
h=1

∣∣wT
K+1hf

′(ŵT
K+1hzK,S)zK,S

∣∣+

Do
out∑
h=1

∣∣1/2wT
K+1hf

′′(ŵT
K+1hzK,S)zK,Sz

T
K,SwK+1h

∣∣
≤ 1

2S

‖αwK+1
‖1 + Tz

Do
out∑
h=1

‖wK+1h · βwK+1h
‖2 +

T 2
z

8
‖wK+1‖2F


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∆bo ≤
1

2S
max
y,zK,S

Do
out∑
h=1

‖ − yhzK,S + f ′(ŵT
K+1hzK,S)zK,S − f ′′(ŵT

K+1hzK,S)zK,Sz
T
K,SwK+1h‖22

1/2

≤ 1

2S
max
y,zK,S

Do
out∑
h=1

|(f ′(ŵT
K+1hzK,S)− yh)− f ′′(ŵT

K+1hzK,S)zTK,SwK+1h|2‖zK,S‖22

1/2

≤ Tz
2S

max
y,zK,S

(Do
out∑
h=1

(f ′(ŵT
K+1hzK,S)− yh)2 + 2|(f ′(ŵT

K+1hzK,S)− yh)f ′′(ŵT
K+1hzK,S)zTK,SwK+1h|

+ (f ′′(ŵT
K+1hzK,S)zTK,SwK+1h)2

)1/2

≤ Tz
2S

Do
out + 2Tz

Do
out∑
h=1

[βwK+1h‖wK+1h‖2] + 1/16 · T 2
z · ‖WK+1‖2F

1/2

∆Co ≤
1

2S
max
zK,S

Do
out∑
h=1

‖1/2f ′′(ŵT
K+1hzK,S)zK,Sz

T
K,S‖2F

1/2

≤ 1

2S
max
zK,S

Do
out∑
h=1

‖1/8zK,SzTK,S‖2F

1/2

≤ 1

16S

√
Do
outT

2
z

Appendix I: Computing a cumulative privacy loss

Preliminary

We first address how the level of perturbation in the coefficients affects the level of privacy in the resulting estimate.
Suppose we have an objective function that’s quadratic in w, i.e.,

E(w) = a+ bw + cw2,

where only the coefficients a, b, c contain the information on the data (not anything else in the objective function is
relevant to data). We perturb the coefficients to ensure the coefficients are collectively (ε, δ)-differentially private.

ã = a+ na, where na ∼ N (0,∆2
aσ

2),

b̃ = b+ nb, where nb ∼ N (0,∆2
bσ

2),

c̃ = c+ nc, where nc ∼ N (0,∆2
cσ

2),
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where ∆a,∆b,∆c are the sensitivities of each term, and σ is a function of ε and δ. Here “collectively" means composing
the perturbed ã, b̃, c̃ results in (ε, δ)-DP. For instance, if one uses the linear composition method (privacy degrades with
the number of compositions), and perturbs each of these with εa, εb, and εc, then the total privacy loss should match the
sum of these losses, i.e., ε = εa + εb + εc. In this case, if one allocates the same privacy budget to perturb each of these
coefficients, then εa = εb = εc = ε/3. The same holds for δ.

However, if one uses more advanced composition methods and allocates the same privacy budget for each perturba-
tion, per-perturbation budget becomes some function (denoted by g) of total privacy budget ε, i.e., εa = εb = εc = g(ε),
where g(ε) ≥ ε/3. So, per-perturbation for a, b, c has a higher privacy budget to spend, resulting in adding less amount
of noise.

Whatever composition methods one uses to allocate the privacy budget in each perturbation of those coefficients,
since the objective function is a simple quadratic form in w, the resulting estimate of w is some function of those
perturbed coefficients, i.e., ŵ = h(ã, b̃, c̃). Since the data are summarized in the coefficients and the coefficients are
(ε, δ)-differentially private, the function of these coefficients is also (ε, δ)-differentially private.

One could write the perturbed objective as

Ẽ(w) = ã+ b̃w + c̃w2,

= (a+ bw + cw2) + (na + nbw + ncw
2),

= E(w) + n(w).

Note that we write down the noise term as n(w) to emphasize that when we optimize this objective function, the noise
term also contributes to the gradient with respect to w (not just the term E(w)).

If we denote some standard normal noise α ∼ N (0, 1), we can rewrite the noise term as

n(w) = (∆a + ∆bw + ∆cw
2)σα,

which is equivalent to

n(w) ∼ N (0, (∆a + ∆bw + ∆cw
2)2σ2),

∼ N (0,∆2
E(w)σ

2)

where we denote ∆E(w) = ∆a + ∆bw + ∆cw
2.

Extending the preliminary to DP-MAC

In the framework of DP-MAC, given a mini-batch of data Dq with a sampling rate q, the DP-mechanism we introduce
first computes coefficients for layer-wise objective functions (K layer-wise objective functions for a model with K layers,
including the output layer), then noise up the coefficients using Gaussian noise, and outputs the vector of perturbed
coefficients for each layer, given by:

Mk(Dq) =

akbk
Ck

+

 n
∗
a,k(Wk,∆ak)

n∗b,k(Wk,∆bk
)

n∗C,k(Wk,∆Ck
)

 .
We denote the noise terms by n∗(W,∆) and the sensitivities of each coefficient by ∆ak , · · · ,∆Ck

.
Here the question is, if we decide to use an advanced composition method such as moments accountant, how the

log-moment of the privacy loss random variable composes in this case. To directly use the composition theorem of

17



Abadi et al, we need to draw a fresh noise whenever we have a new subsampled data. This means, there should be an
instance of Gaussian mechanism that affects the these noise terms simultaneously.

To achieve this, we rewrite the vector of perturbed objective coefficients as Ẽ(w) below. For each layer we gather
the loss coefficients into one vector [ak, vec(bk), vec(Ck)]T . Then, we scale down each objective function by its own
sensitivity times the number of partitions

√
MK, so that the concatenated vector’s sensitivity becomes just 1. Then, add

the standard normal noise to the vectors with scaled standard deviation, σ. Then, scale up each perturbed quantities by
its own sensitivity times

√
MK. In this example we use all three coefficients, so M = 3. Note that in the experiments,

using linear expansion we would only use bk and so M would equal 1 in that case. In the following we use Pm,k
to denote the a partition of the vector, which may pick out any of the contained coefficients, e.g. ak,bk or Ck for
m = 1,m = 2 and m = 3 respectively.

M(Dq) =



P̃1,1(W1)

...

P̃M,1(W1)

...

P̃M,K(WK)



=


P1,1(W1)

...
PM,K(WK)

+


n∗1(W1)

...
n∗M,K(WK)



=


√
MK∆P1,1(W1) ·

{
P1,1(W1)√

MK∆P1,1(W1)
+ σN (0, 1)

}
. . .

√
MK∆PM,K(WK) ·

{
PM,K(WK)√

MK∆PM,K (WK )
+ σN (0, 1)

}


=


√
MK∆P1,1(W1)

. . .
√
MK∆PM,K(WK)

 ·



P1,1(W1)√
K∆P1,1(W1)

. . .
PM,K(WK)√
K∆PM,K (WK )

+N (0, σ2I)


Since we’re adding independent Gaussian noise under each subsampled data, the privacy loss after T steps, is simply

following the composibility theorem in the Abadi et al paper.
So compared to the sensitivity for n(w) in the first section, the new noise n∗(w) has a higher sensitivity due to the

factor
√
MK.

Moments Calculations

In this case, with a subsampling with rate q, we re-do the calculations in Abadi et al. First, let:

µ0 = N (0K , σ
2I), µ1 = N (1K , σ

2I)
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and let µ as a mixture of the two Gaussians,

µ = (1− q)N (0K , σ
2I) + qN (1K , σ

2I).

Here 0K is theK-dimensional 0 vector, and 1K is theK-dimensional all ones vector. HereαM (λ) should be log max(E1, E2)
where

E1 = Ez∼µ[(µ(z)/µ0(z))λ], E2 = Ez∼µ0 [(µ0(z)/µ(z))λ]

Then, we can compose further mechanisms using this particular αM (λ), which follows the same analysis as in Abadi et
al.

19


