
DP-MAC: The Differentially Private Method of
Auxiliary Coordinates for Deep Learning

Frederik Harder1 Jonas Köhler2 Max Welling3 Mijung Park4

Abstract

Developing a differentially private deep learning algorithm is challenging, due to
the difficulty in analyzing the sensitivity of objective functions that are typically
used to train deep neural networks. Many existing methods resort to the stochastic
gradient descent algorithm and apply a pre-defined sensitivity to the gradients
for privatizing weights. However, their slow convergence typically yields a high
cumulative privacy loss. Here, we take a different route by employing the method
of auxiliary coordinates, which allows us to independently update the weights
per layer by optimizing a per-layer objective function. This objective function
can be well approximated by a low-order Taylor’s expansion, in which sensitivity
analysis becomes tractable. We perturb the coefficients of the expansion for privacy,
which we optimize using more advanced optimization routines than SGD for faster
convergence. We empirically show that our algorithm provides a decent trained
model quality under a modest privacy budget.1

1 Introduction

While providing outstanding performance, it has been shown that trained deep neural networks
(DNNs) can expose sensitive information from the dataset they were trained on [1, 2, 3, 4]. In order
to protect potentially sensitive training data, many existing methods adopt the notion of privacy,
called differential privacy (DP) [5]. Differentially private algorithms often comprise a noise injection
step (e.g. during the training process), which is generally detrimental to performance and leads to a
trade-off between privacy and utility. The amount of noise necessary for a desired level of privacy
depends on the sensitivity of an algorithm, a maximum difference in its output depending on whether
or not a single individual participates in the data. In DNNs, the sensitivity of an objective function
is often intractable to quantify, since data appears in the function in a nested and complex way. In
addition, such models have thousands to millions of parameters, one needs to saveguard, and require
many passes over the dataset in training. As a result, providing meaningful privacy guarantees while
maintaining reasonable performance remains a challenging task for DNNs.

One existing approach to this problem, DP-SGD [6, 7, 8], avoids complicated sensitivities, by
applying a pre-defined sensitivity to the gradients, which are then perturbed with Gaussian noise
before updating the weights to ensure DP. This work also introduces the moments accountant (MA)
[6], a useful method for computing cumulative privacy loss when training for many epochs (a formal
introduction to this method is found in Appendix A). In another line of recent work [9, 10, 11], DP
training is achieved by approximating the nested objective function through Taylor approximation
and perturbing each of the coefficients of the approximated loss before training.

1,2,4: Max Planck Institute for Intelligent Systems, 3: University of Amsterdam
1We updated this current manuscript by fixing an implementation error, which was part of the implementation

to produce the results we presented at the PPML2018 workshop. For detailed comments on what changes we
made, see Appendix.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.
Workshop on Privacy Preserving Machine Learning

In this paper, we combine the benefits of these two approaches. We modify the algorithm called
the method of auxiliary coordinates (MAC), which allows independent weight updates per layer, by
framing the interaction between layers as a local communication problem via introducing auxiliary
coordinates [12]. This allows us to split the nested objective function into per-layer objective functions,
which can be approximated by low-order Taylor’s expansions. In this case the sensitivity analysis of
the coefficients becomes tractable.

2 DP-MAC

2.1 The Method of Auxiliary Coordinates

Here we provide a short introduction on the MAC algorithm (see [12] for details). Under a fully
connected neural net with K hidden layers, a typical mean squared error (MSE) objective is given by

E(W) = 1
2N

N∑
n=1

||yn − f(xn;W)||2, (1)

where f(xn;W) = fK+1(. . . f2(f1(xn;W1) . . .);WK+1). We denote W as a collection of weight matrices
of (K + 1)-layers, i.e., W = {Wk}K+1

k=1 , where the size of each weight matrix is given by Wk ∈ RD
k
in×D

k
out .

Each layer activation function is given by fk(xn;Wk) = fk(Wk
>xn), and fk could be any type of element-

wise activation functions. In the MAC framework [12], the objective function in eq. 1 is expanded by adding
auxiliary variables {zn} (one per datapoint) such that the optimization over many variables are decoupled:

E(W,Z;µ) = Eo(W,Z) +

K∑
k=1

Ek(W,Z, µ), (2)

where the partial objective functions at the output layer and at the k-th layer are given
by Eo(WK+1,ZK) = 1

2N

∑N
n=1 ||yn − fK+1(zK,n;WK+1)||2, and Ek(Wk,Zk,Zk−1, µ) =

µ
2N

∑N
n=1 ||zk,n − fk(zk−1,n;Wk)||2. Alternating optimization of this objective function w.r.t. W and Z

minimizes the objective function. In this paper, we set µ = 1, as suggested in [12]. For obtaining differentially
private estimates of W, it turns out we need to privatize the W update steps only, while we can keep the Z
update steps non-private, as has been studied in Expectation Maximization (EM) type algorithms before [13, 14].

To make this process DP, we first approximate each objective function as 1st or 2nd-order polynomials in
the weights. Then, we perturb each approximate objective function by adding noise to the coefficients and
optimize it for estimating W. How much noise we need to add to these coefficients depends on the sensitivity of
these coefficients as well as the privacy loss we allow in each training step. The final estimate WT depends
on estimates Wt and Zt for all t < T and so we keep the privacy loss per iteration fixed and compute the
cumulative loss using the moments accountant.

2.2 DP-approximate to the per-layer objective function

First, we consider approximating the per-layer objective function via the 2nd-order Taylor expansion

Ek(Wk) = 1
2N

N∑
n=1

||zk,n − fk(zk−1,n;Wk)||2 ≈ 1
2N

ak +

Dk
out∑
h=1

wkh
>bkh +

Dk
out∑
h=1

wkh
>Ckhwkh

 ,
where wkh ∈ RD

k
in is the h-th column of the matrix Wk, and the derivation of each term ak,bkh ∈

RD
k
in ,Ckh ∈ RD

k
in×D

k
in is given below. Here we choose to use the softplus function as an example activation

function for f , but any twice differentiable function is valid. We introduce a new notation Tn(wkh)

Ek(Wk) = 1
2N

N∑
n=1

Dk
out∑
h=1

Tn(wkh) (3)

where Tn(wkh) = z2kh,n − 2zkh,nf(wkh
>zk−1,n) + {f(wkh

>zk−1,n)}2. We then approximate Tn(wkh)
by the 2nd-order Taylor expansion evaluated at ŵkh. In the first optimization step, we approximate the loss
function by the 2nd-order Taylor expansion evaluated at a randomly drawn ŵkh ∼ N (0, I). In the consecutive
optimization step, we evaluate the loss function at the noised-up estimate ŵkh obtained from the previous
optimization step.

Tn(wkh) ≈ Tn(ŵkh) + (wkh − ŵkh)>∂Tnkh + 1
2
(wkh − ŵkh)>∂2Tnkh(wkh − ŵkh), (4)

2

where the derivative expressions of Tn(wkh) are given by

∂Tnkh =[−2zkh,nf
′(ŵkh

>zk−1,n) + 2f(ŵkh
>zk−1,n)f ′(ŵkh

>zk−1,n)]zk−1,n,

∂2Tnkh =[−2zkh,nf
′′(ŵkh

>zk−1,n) + 2f(ŵkh
>zk−1,n)f ′′(ŵkh

>zk−1,n) + 2{f ′(ŵkh
>zk−1,n)}2]zk−1,nzk−1,n

>.

From this, we define the coefficients ak,bkh,Ckh as: ak =
∑N
n=1

∑Dk
out

h=1 [Tn(ŵkh) − ŵkh
>∂Tnkh +

1
2
ŵkh

>∂2Tnkhŵkh],bkh =
∑N
n=1

[
∂Tnkh − ∂2Tnkhŵkh

]
, Ckh =

∑N
n=1

1
2
∂2Tnkh.

Adding Gaussian noise to these coefficients for privacy modifies the objective function by

Ẽk(wk) ≈ 1
2N

ãk +

Dk
out∑
h=1

wkh
>b̃kh +

Dk
out∑
h=1

wkh
>C̃khwkh

 , (5)

where ãk = ak +N (0, (∆ak)2σ2), b̃k = bk +N (0, (∆bk)2σ2I), C̃k = Ck +N (0, (∆Ck)2σ2I) and the
amount of additive Gaussian noise depends on the sensitivity (∆ak,∆bk,∆Ck) of each term. When using a
purely gradient-based optimization routine (e.g. Adam, unlike Conjugate Gradient), we don’t have to perturb ak
and in the case of first order approximation Ck is omitted as well, leaving only bk. This method is not limited to
MSE objectives and in the classification task we use a binary cross-entropy objective analogously in the output
layer.

Note that on the first W step, unperturbed 1st and 2nd-order approximations provide the same gradient. In this
case, if we use vanilla SGD to optimize this first order approximation, this boils down to a variant of DP-SGD,
which optimizes each layer objective function separately.

Analytic Sensitivities of the coefficients are given in the appendix. Depending on the architecture of a neural
network and dataset at hand, these analytic sensitivity bounds can often be loose, in which case we propose
to take a more direct approach and bound the sensitivities directly by clipping the norms of the coefficients
‖∂Tnk‖F ≤ Θ∂T and ‖∂2Tnk‖F ≤ Θ∂2T . Here, ∂Tnk denotes the matrix of ∂Tnkh vectors, which are used to
compute ∆bk and ∆Ck. We found that this yields significantly lower bounds in practice and use these clipping
thresholds, along with linear Taylor expansion for all experiments listed below.

2.3 Calculation of cumulative privacy loss

Using the moments accountant and the theorem for subsampled Gaussian mechanism given in [6] for composition
requires caution, since the log moments of privacy loss are linearly growing, only if we draw fresh noise per
new subsampled data. Up to this point our algorithm, unfortunately, draws many noises for many losses given a
subsampled data. This is fixed by treating the vectorized coefficients of the perturbed layerwise objectives as
a single vector quantity [a1,b1,C1, · · · , aK ,bK ,CK ,] which is perturbed in one step. As previously done
in [8], we scale down each objective function coefficient by its own sensitivity times the number of partitions√
MK, where m = 3 if ak,bk,Ck are used to compute the loss (and m = 1 if only bk is used). This sets the

concatenated vector’s sensitivity to 1. Then, we add the standard Gaussian noise with standard deviation σ to
the vectors and scale up each perturbed quantities by their own sensitivity times

√
MK. Partitioning the vector

in this way allows us to effectively consider the sensitivity and clipping bounds in each layer independently.
Details are given in appendix I. The DP-MAC algorithm is summarized in Algorithm 1.

Algorithm 1 DP-MAC algorithm

Require: Dataset D, total number of iterations T , privacy parameter σ2, sampling rate q

Ensure: (ε, δ)-DP weights {Wk}K+1
k=1

for number of Iterations ≤ T do
1. Optimize eq. 2 for Z
2. Optimize eq. 5 (noised-up objective) for W

end for
Calculate the total privacy loss (ε, δ) using moments accountant

3 Experiments

Autoencoder We examine the performance of DP-MAC, when training deeper models, in a reconstruction
task with a fully connected autoencoder with 6 layers, as used in the original MAC paper [12]. Unlike the
original paper, we don’t store any z values but initialized them with a forward pass on each iteration. For this, we
use the USPS dataset is a collection of 16x16 pixel grayscale handwritten digits, of which we use 5000 samples

3

Figure 1: Autoencoder training and test errors. (± 1 stdev. of the latter) averaged over 10 runs each.

for training and 5000 for testing. We provide results for ε values of 1, 2, 4, 8 with δ =1e-5. For comparison, we
train the same model with DP-SGD where we use a single norm bound Θg for the full step-wise gradient of the
model.

In Fig 1, we observe that DP-MAC lacks behind DP-SGD in both private and non-private settings. We suspect
that this is in part owed to vanishing gradient updates in the MAC model. We found that independent of the
number of Z updates per iteration, gradient updates in the first and last layer of the model differ by up to 4 orders
of magnitude. DP-SGD does not exhibit this problem.

Classifier In addition, we show the performance of our method compared to other existing methods on
a classification task on the MNIST digit dataset. We train a classifier with a single hidden layer of 300
units using DP-MAC with noise levels σ = [1.0, 2.8, 8.0], which guarantees DP with δ = 10−5 and ε =
[8, 2, 0.5]. As in [6], we use a DP-PCA to reduce input dimensionality to 60. Table 2 shows the comparison
between our method and the DP-SGD results by [6] as well as the DP convolutional deep belief networks
(DP-CDBN) by [11]. Here, our method achieves a comparable test accuracy under the same privacy constraint
within a relatively small number of training epochs. Our implementation of both experiments is available at
https://github.com/mijungi/dp_mac.

DP-SGD DP-CDBN DP-MAC
ε = 0.5 0.90 0.92 0.90
epochs 16 162 10
ε = 2 0.95 0.95 0.95
epochs 120 162 30
ε = 8 0.97 0.97
epochs 700 30

Figure 2: Test performance of DP-MAC compared to [6] DP-SGD and DP-CDBN [11] at δ = 10−5

4 Conclusion

We present a novel differentially private deep learning paradigm, DP-MAC, which allows us to compute the
sensitivity of the approximate objective functions analytically. Empirically however, we find that directly setting
clipping bounds yields significantly lower sensitivities, which leads us to gradient perturbation as a special case.
We found that MAC in its current state exhibits vanishing gradient problems in scaling to deeper models, which
we believe causes the decrease in test performance compared to regular DP-SGD when training deeper models.
Nonetheless, we believe that this work offers an interesting new perspective on the possibilities computing
sensitivities in deep neural networks.

4

https://github.com/mijungi/dp_mac

References
[1] Nicholas Carlini, Chang Liu, Jernej Kos, Úlfar Erlingsson, and Dawn Song. The secret sharer: Measuring

unintended neural network memorization & extracting secrets. CoRR, abs/1802.08232, 2018.

[2] Congzheng Song, Thomas Ristenpart, and Vitaly Shmatikov. Machine learning models that remember too
much. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, pages 587–601, New York, NY, USA, 2017. ACM.

[3] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In 2015 53rd Annual Allerton Conference
on Communication, Control, and Computing (Allerton), pages 909–910, Sept 2015.

[4] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks that exploit confidence
information and basic countermeasures. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, pages 1322–1333, New York, NY, USA, 2015. ACM.

[5] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends Theor.
Comput. Sci., 9:211–407, August 2014.

[6] M. Abadi, A. Chu, I. Goodfellow, H. Brendan McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep
learning with differential privacy. ArXiv e-prints, July 2016.

[7] Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-supervised
Knowledge Transfer for Deep Learning from Private Training Data. In Proceedings of the International
Conference on Learning Representations (ICLR), April 2017.

[8] H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
language models without losing accuracy. CoRR, abs/1710.06963, 2017.

[9] J. Zhang, Z. Zhang, X. Xiao, Y. Yang, and M. Winslett. Functional Mechanism: Regression Analysis under
Differential Privacy. ArXiv e-prints, August 2012.

[10] NhatHai Phan, Yue Wang, Xintao Wu, and Dejing Dou. Differential privacy preservation for deep
auto-encoders: an application of human behavior prediction, 2016.

[11] N. Phan, X. Wu, and D. Dou. Preserving Differential Privacy in Convolutional Deep Belief Networks.
ArXiv e-prints, June 2017.

[12] Miguel Carreira-Perpinan and Weiran Wang. Distributed optimization of deeply nested systems. In
Samuel Kaski and Jukka Corander, editors, Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, volume 33 of Proceedings of Machine Learning Research, pages
10–19, Reykjavik, Iceland, 22–25 Apr 2014. PMLR.

[13] Mijung Park, James Foulds, Kamalika Choudhary, and Max Welling. DP-EM: Differentially Private
Expectation Maximization. In Aarti Singh and Jerry Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics, volume 54 of Proceedings of Machine Learning
Research, pages 896–904, Fort Lauderdale, FL, USA, 20–22 Apr 2017. PMLR.

[14] Mijung Park, James Foulds, Kamalika Chaudhuri, and Max Welling. Variational Bayes In Private Settings
(VIPS). ArXiv e-prints, November 2016.

[15] Anand D. Sarwate and Kamalika Chaudhuri. Signal processing and machine learning with differential
privacy: Algorithms and challenges for continuous data. IEEE Signal Process. Mag., 30(5):86–94, 2013.

5

	Introduction
	DP-MAC
	The Method of Auxiliary Coordinates
	DP-approximate to the per-layer objective function
	Calculation of cumulative privacy loss

	Experiments
	Conclusion

