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Local Differential Privacy (LDP)

For all 𝑖, 𝐴𝑖 is a local 𝜖-DP randomizer:

for all 𝑣, 𝑣′ ∈ 𝑋

[Warner ‘65; EGS ‘03; KLNRS ‘08]
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Outline

Online monitoring with LDP
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Benefits of anonymity:

privacy amplification by shuffling



Online monitoring
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𝑛 𝑥𝑖,𝑗 for all 𝑗 ∈ [𝑑]
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Status of user 𝑖 on day 𝑗

Assume that each user’s status 

changes at most 𝑘 times

• only for utility

𝑆1 𝑆2 𝑆3 𝑆𝑛

time



Monitoring with LDP

• Report the status changes (only first 𝑘)

• Maintains a tree of counters each over an interval of time

• Based on [DNPR ‘10; CSS ‘11]
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There exists an 𝜖-LDP algorithm that constructs estimates  
መ𝑆1, መ𝑆2, … , መ𝑆𝑑 such that with high prob. for all 𝑗 ∈ [𝑑],

𝑆𝑗 − መ𝑆𝑗 = 𝑂
𝑛𝑘 (log 𝑑)2

𝜖



Encode-Shuffle-Analyze (ESA) [Bittau et al. ‘17]
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Privacy amplification by shuffling
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For any 𝜖 = 𝑂(1) and any sequence of 𝜖-LDP algorithms (𝐴1, … , 𝐴𝑛), let

𝐴shuffle 𝑥1, … , 𝑥𝑛 = 𝐴1 𝑥𝜋 1 , 𝐴2 𝑥𝜋 2 , … , 𝐴𝑛 𝑥𝜋 𝑛

for a random and uniform permutation 𝜋: 𝑛 → 𝑛

Then 𝐴shuffle is 𝜖′, 𝛿 -DP in the central model for 𝜖′ = 𝑂
𝜖 log 1/𝛿

𝑛

Holds for adaptive case: 𝐴𝑖 may depend on outputs of 𝐴1, … , 𝐴𝑖−1



Comparison with subsampling

Advantages of shuffling:

• does not affect the statistics of the dataset 

• does not increase LDP cost
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Running 𝜖-DP algorithm on random 𝑞-fraction of elements is ≈ 𝑞𝜖-DP (𝜖 ≤ 1) [KLNRS ‘08]

Output 𝐴1 𝑥𝑖1 , 𝐴2 𝑥𝑖2 , … , 𝐴𝑛 𝑥𝑖𝑛

where 𝑖1, 𝑖2, … , 𝑖𝑛 ∼ [𝑛] (independently) is 𝜖′, 𝛿 -DP for 𝜖′ = 𝑂
𝜖 log 1/𝛿

𝑛

e.g. [BST ‘14]

Shuffling includes all elements so 𝑞 = 1
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Implications for ESA
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Set 𝑆 ⊆ [𝑛] with the

same randomizer

For every 𝑖 ∈ 𝑆, the output is 𝑂
𝜖 log 1/𝛿

𝑆
, 𝛿 -DP for element at position 𝑖



Output distribution is determined by 𝑚 = #1(RR(𝑥1), … , RR(𝑥𝑛))

𝑚 ∼ Bin 𝑘,
2

3
+ Bin 𝑛 − 𝑘,

1

3
, where 𝑘 = #1(𝑥1, … , 𝑥𝑛)

For a neighboring dataset: 𝑘′ = 𝑘 ± 1

Bin 𝑘,
2

3
+ Bin 𝑛 − 𝑘,

1

3
≈

log 1/𝛿
𝑛 ,𝛿

Bin 𝑘 + 1,
2

3
+ Bin 𝑛 − 𝑘 − 1,

1

3

[DKMMN ‘06]

Special case: binary randomized response
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RR: For 𝑥 ∈ 0,1 , return 𝑥 flipped with probability 1/3.  Satisfies  (log 2)-LDP

Also given in [Cheu,Smith,Ullman,Zeber,Zhilyaev ‘18] (independently)



Conclusions

• Monitoring with LDP and log dependence on time

• General privacy amplification technique

o Match state of the art in the central model

o Can be used to derive lower bounds for LDP 

• Provable benefits of anonymity for ESA-like architectures

• To appear in SODA 2019

• arxiv.org/abs/1811.12469
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