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Local Differential Privacy (LDP)
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For all i, A4; is a local e-DP randomizer:
forallv,v' € X

N

Ai(x; =v) Ai(x; =)

Server _

[Warner ‘65; EGS ‘03; KLNRS ‘08]
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f(xl, X9, ...,xn)



Online monitoring with LDP Benetits of anonymity:
privacy amplification by shuffling




Online monitoring

time
X1,1 X1,2 X1,3 X1,d Xi,j < {0'1}
e e o Status of user i on day j
X2,1 X2,2 X2,3 X2.d
Xa1 | | Xsp | | Xas X3 4 Assume that each user’s stafus
s Ty .. h— changes at most k times
. : - " aaam « only for ufility
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Estimate the daily counts §; = Y, x; ; for all j € [d]



Monitoring with LDP
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There exists an e-LDP algorithm that constructs estimates
51,55, ..., 8, such that with high prob. for all j € [d],

S —3| =0 (‘/ﬁk (log d)z)
J) JlI
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« Report the status changes (only first k)
 Maintains a tree of counters each over an interval of fime
« Based on [DNPR ‘10; CSS ‘1]



Encode-Shuffle-Analyze (ESA) [Bittau et al. ‘17]
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Shuffle and anonymize




Privacy amplification by shuffling

For any e = 0(1) and any sequence of e-LDP algorithms (44, ..., 4,), let

Ashufﬂe (xli ey xn) — Al(xn(l))»AZ(xn(Z)): :An(xrc(n))
for a random and uniform permutation m: [n] — [n]

Then Aghusre iS (€7, 8)-DP in the centfral model for e’ = 0 (EJlojg/‘S))

Holds for adaptive case: 4; may depend on outputs of A4, ..., A4;_1



Comparison with subsampling

Running e-DP algorithm on random g-fraction of elements is = qe-DP (e < 1) [KLNRS ‘08]

Shuffling includes all elementsso g =1

Output 4, (x;,), Az (xi,), ., An(xi,)

where iy, iy, ..., i, ~ [n] (independently) is (¢',8)-DP for e’ = 0 (6%105(%1/6))

e.g. [BST “14]

Advantages of shuffling:
« does not affect the statistics of the dataset
« does not increase LDP cost



Implications for ESA
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Shuffle and anonymize
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For everyi € S, the outputis (0 ( ),5)—DP for element at position i



Special case: binary randomized response

RR: For x € {0,1}, return x flipped with probability 1/3. Satisfies (log 2)-LDP

Output distribution is determined by m = #; (RR(x;), ..., RR(x;,))
m ~ Bin (k, g) + Bin (n — k, %) where k = #,(xq, ..., x5,)

For a neighboring dataset: k' =k + 1

. 2 . 1 . 2 . 1
Bin <k,§> + Bin (Tl - k,§> N<\/W,5> Bin <k + 1,5) + Bin <Tl —k — 1,§>

[DKMMN ‘06]

Also given in [Cheu,Smith,Ullman,Zeber,Zhilyaev ‘18] (independently)



Conclusions

* Monitoring with LDP and log dependence on time

General privacy amplification technigue
o Match state of the art in the central model
o Can be used to derive lower bounds for LDP

Provable benefits of anonymity for ESA-like architectures

To appear in SODA 2019
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