Amplification by Shuffling: From Local to Central Differential Privacy via Anonymity

Vitaly Feldman

Ulfar Erlingsson Ilya Mironov Ananth Raghunathan Kunal Talwar Abhradeep Thakurta

Google

Local Differential Privacy (LDP)

Compute (approximately) $f(x_1, x_2, ..., x_n)$

Outline

Online monitoring with LDP

Benefits of anonymity: privacy amplification by shuffling

Online monitoring

 $x_{i,j} \in \{0,1\}$ Status of user *i* on day *j*

Assume that each user's status changes at most *k* times

• only for utility

Estimate the daily counts $S_j = \sum_{i=1}^n x_{i,j}$ for all $j \in [d]$

There exists an ϵ -LDP algorithm that constructs estimates $\hat{S}_1, \hat{S}_2, ..., \hat{S}_d$ such that with high prob. for all $j \in [d]$, $|S_j - \hat{S}_j| = O\left(\frac{\sqrt{nk} (\log d)^2}{\epsilon}\right)$

- Report the status changes (only first k)
- Maintains a tree of counters each over an interval of time
- Based on [DNPR '10; CSS '11]

Encode-Shuffle-Analyze (ESA) [Bittau et al. '17]

Shuffle and anonymize

Privacy amplification by shuffling

For any $\epsilon = 0(1)$ and any sequence of ϵ -LDP algorithms $(A_1, ..., A_n)$, let $A_{\text{shuffle}}(x_1, ..., x_n) = A_1(x_{\pi(1)}), A_2(x_{\pi(2)}), ..., A_n(x_{\pi(n)})$ for a random and uniform permutation $\pi: [n] \to [n]$ Then A_{shuffle} is (ϵ', δ) -DP in the central model for $\epsilon' = O\left(\frac{\epsilon\sqrt{\log(1/\delta)}}{\sqrt{n}}\right)$

Holds for adaptive case: A_i may depend on outputs of A_1, \ldots, A_{i-1}

Running ϵ -DP algorithm on random q-fraction of elements is $\approx q\epsilon$ -DP ($\epsilon \leq 1$) [KLNRS '08]

Shuffling includes all elements so q = 1

Output $A_1(x_{i_1}), A_2(x_{i_2}), \dots, A_n(x_{i_n})$ where $i_1, i_2, \dots, i_n \sim [n]$ (independently) is (ϵ', δ) -DP for $\epsilon' = O\left(\frac{\epsilon \sqrt{\log(1/\delta)}}{\sqrt{n}}\right)$ e.g. **[BST '14]**

Advantages of shuffling:

- does not affect the statistics of the dataset
- does not increase LDP cost

Implications for ESA

9

Shuffle and anonymize

For every $i \in S$, the output is $\left(O\left(\frac{\epsilon\sqrt{\log(1/\delta)}}{\sqrt{|S|}}\right), \delta\right)$ -DP for element at position i

Special case: binary randomized response

RR: For $x \in \{0,1\}$, return x flipped with probability 1/3. Satisfies (log 2)-LDP

Output distribution is determined by $m = \#_1(\operatorname{RR}(x_1), \dots, \operatorname{RR}(x_n))$ $m \sim \operatorname{Bin}\left(k, \frac{2}{3}\right) + \operatorname{Bin}\left(n - k, \frac{1}{3}\right)$, where $k = \#_1(x_1, \dots, x_n)$

For a neighboring dataset: $k' = k \pm 1$

$$\operatorname{Bin}\left(k,\frac{2}{3}\right) + \operatorname{Bin}\left(n-k,\frac{1}{3}\right) \approx_{\left(\sqrt{\frac{\log(1/\delta)}{n}},\delta\right)} \operatorname{Bin}\left(k+1,\frac{2}{3}\right) + \operatorname{Bin}\left(n-k-1,\frac{1}{3}\right)$$

[DKMMN '06]

Also given in [Cheu,Smith,Ullman,Zeber,Zhilyaev '18] (independently)

Conclusions

- Monitoring with LDP and log dependence on time
- General privacy amplification technique
 - Match state of the art in the central model
 - Can be used to derive lower bounds for LDP
- Provable benefits of anonymity for ESA-like architectures
- To appear in SODA 2019
- <u>arxiv.org/abs/1811.12469</u>

