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Sensitive Structured Data

Medical Records

Search Logs

Social Networks



This Talk: Two Case Studies

1.  Privacy-preserving HIV Epidemiology

2.  Privacy in Time-series data



HIV Epidemiology

Goal:  Understand how HIV spreads among people



HIV Transmission Data

distance (Seq-A, Seq-B) < t

HIV transmission

Virus Seq-A

A

Virus Seq-B

B



From Sequences to Transmission Graphs

Node = Patient

Edge = Plausible 
transmission

Viral Sequences



…Growing over Time

Node = Patient

Edge = Transmission

2015



…Growing over Time

Node = Patient

Edge = Transmission

2015 2016



…Growing over Time

Node = Patient

Edge = Transmission

2015 2016 2017



…Growing over Time

2015 2016 2017

Release properties of G with privacy across timeGoal:



Problem: Continual Graph Statistics Release

Given: (Growing) graph G
At time t, nodes and adjacent edges                  arrive(@Vt, @Et)

Goal: At time t, release f(Gt), where f = graph statistic, and 
Gt = ([st@Vs,[st@Es)

while preserving patient privacy and high accuracy



What kind of Privacy?

Patient A is in the graphHide:

Release: Large scale properties

Node = Patient

Edge = 
Transmission



What kind of Privacy?

Node = Patient

Edge = 
Transmission

A particular patient has HIVHide:

Release: Statistical properties (degree distribution, clusters, 
does therapy help, etc)

Privacy notion: Node Differential Privacy



Talk Outline

• The Problem: Private HIV Epidemiology

• Privacy Definition: Differential Privacy



Differential Privacy [DMNS06]

“similar”

Randomized
Algorithm

Randomized 
Algorithm

Data  +

Data  +

Participation of a single person does not change output



Differential Privacy: Attacker’s View

Prior 
Knowledge +

Algorithm
Output on 
Data &

=
Conclusion

on

Prior 
Knowledge +

Algorithm
Output on 
Data &

=
Conclusion

on

a.   Algorithm could draw personal conclusions about Alice

b.   Alice has the agency to participate or not

Note:



Differential Privacy [DMNS06]

For all D, D’ that differ in one person’s value,
t

D D’
p[A(D) = t] p[A(D’) = t] 

  

If A =   -differentially private randomized algorithm, then:✏

sup

t

��� log
p(A(D) = t)

p(A(D0
) = t)

���  ✏



Differential Privacy

1. Provably strong notion of privacy

2. Good approximations for many functions

e.g, means, histograms, etc.



Node Differential Privacy

Node = Patient

Edge = 
Transmission



Node Differential Privacy

Node = Patient

Edge = 
Transmission

One person’s value = One node + adjacent edges



Talk Outline

• The Problem: Private HIV Epidemiology

• Privacy Definition: Node Differential Privacy

• Challenges



Problem: Continual Graph Statistics Release

Given: (Growing) graph G
At time t, nodes and adjacent edges                  arrive(@Vt, @Et)

Goal: At time t, release f(Gt), where f = graph statistic, and 
Gt = ([st@Vs,[st@Es)

with node differential privacy and high accuracy



Why is Continual Release of Graphs  
with Node Differential Privacy hard?

1. Node DP challenging in static graphs [KNRS13, BBDS13]

2. Continual release of graph data has extra challenges



Challenge 1: Node DP

Removing one node can change properties by a lot (even 
for static graphs)

#edges = 6 (size of  V) #edges = 0

Hiding one node needs high noise           low accuracy



Prior Work: Node DP in Static Graphs

- Project to low degree graph G’ and use node DP on G’
- Projection algorithm needs to be “smooth” and 

computationally efficient

Approach 1 [BCS15]:

Approach 2 [KNRS13, RS15]: 

-   Assume bounded max degree 



Challenge 2: Continual Release of Graphs

- Methods for tabular data [DNPR10, CSS10] do not apply 

- Sequential composition gives poor utility 

- Graph projection methods are not “smooth” over time



Talk Outline

• The Problem: Private HIV Epidemiology

• Privacy Definition: Node Differential Privacy

• Challenges

• Approach



Algorithm: Main Ideas

Strategy 1: Assume bounded max degree of G (from domain)

Strategy 2: Privately release “difference sequence” of statistic
(instead of the direct statistic)



Difference Sequence

Graph
Sequence:

G1 G2 G3

Statistic
Sequence: f(G1) f(G2) f(G3)

Difference
Sequence:

f(G1) f(G2) - f(G1) f(G3) - f(G2)



Key Observation

Key Observation: For many graph statistics, when G is 
degree bounded, the difference sequence has low sensitivity

Example Theorem:  
If max degree(G) = D, then sensitivity of the difference 
sequence for #high degree nodes is at most 2D + 1. 



From Observation to Algorithm

Algorithm:

1.  Add noise to each item of difference sequence to 
hide effect of single node and publish

2.  Reconstruct private statistic sequence from private
     difference sequence



How does this work?



Experiments - Privacy vs. Utility

#high degree nodes

Our Algorithm,  DP Composition 1, DP Composition 2

#edges

Baselines: 



Experiments - #Releases vs. Utility

#high degree nodes#edges

Our Algorithm,  DP Composition 1, DP Composition 2
Baselines: 



Talk Agenda

Privacy is application-dependent!

Two applications: 

1.  HIV Epidemiology

2.  Privacy of time-series data - activity 
monitoring, power consumption, etc



Time Series Data

Physical Activity
Monitoring

Location traces



Example: Activity Monitoring

Hide: Activity at each time against adversary with prior 
knowledge

Data: Activity trace of a subject

Release: (Approximate) aggregate activity 



Why is Differential Privacy not Right 
for Correlated data?



1-DP: Output histogram of activities + noise with stdev T

Correlation 
Network

Example: Activity Monitoring

D = (x1, .., xT),   xt = activity at time t

Too much noise - no utility!

Data from a single subject



Correlation 
Network

Example: Activity Monitoring

D = (x1, .., xT),   xt = activity at time t

1-entry-DP: Output activity histogram + noise with stdev 1

Not enough noise - activities across time are correlated!



Correlation 
Network

Example: Activity Monitoring

D = (x1, .., xT),   xt = activity at time t

1-entry-group DP:  
Output activity histogram + noise with stdev T

Too much noise - no utility!



How to define privacy for Correlated Data ?



Pufferfish Privacy [KM12]

Secret Set S

S: Information to be protected

e.g:  Alice’s age is 25, Bob has a disease



Pufferfish Privacy [KM12]

Secret Set S
Secret Pairs  
 Set Q

Q:  Pairs of secrets we want to be indistinguishable

e.g:  (Alice’s age is 25, Alice’s age is 40)

(Bob is in dataset, Bob is not in dataset)



Pufferfish Privacy [KM12]

Secret Set S
Secret Pairs  
 Set Q

Distribution  
   Class ⇥

e.g:  (connection graph G, disease transmits w.p [0.1, 0.5])

(Markov Chain with transition matrix in set P)

:  A set of distributions that plausibly generate the data⇥

May be used to model correlation in data



Pufferfish Privacy [KM12]

Secret Set S
Secret Pairs  
 Set Q

Distribution  
   Class ⇥

whenever P (si|✓), P (sj |✓) > 0

p(A(X)|sj , ✓)p(A(X)|si, ✓)

t

p✓,A(A(X) = t|si, ✓)  e✏ · p✓,A(A(X) = t|sj , ✓)

An algorithm A is    -Pufferfish private with parameters

(S,Q,⇥) if for all (si, sj) in Q, for all          ,             all t,✓ 2 ⇥ X ⇠ ✓,

✏



Pufferfish Interpretation of DP

Theorem:  Pufferfish = Differential Privacy when:

S = {  si,a := Person i has value a,  for all i, all a in domain X }

Q = {  (si,a si,b), for all i and (a, b) pairs in X x X }

= {  Distributions where each person i is independent }⇥



Pufferfish Interpretation of DP

Theorem:  Pufferfish = Differential Privacy when:

S = {  si,a := Person i has value a,  for all i, all a in domain X }

Q = {  (si,a si,b), for all i and (a, b) pairs in X x X }

= {  Distributions where each person i is independent }⇥

Theorem:  No utility possible when:

= {  All possible distributions }⇥



How to get Pufferfish privacy?

Special case mechanisms [KM12, HMD12]

Is there a more general Pufferfish mechanism 
for a large class of correlated data?

Our work:  Yes, the Markov Quilt Mechanism

(Also concurrent work [GK16])



Correlation Measure: Bayesian Networks

Node: variable

Directed Acyclic Graph

Pr(X1, X2, . . . , Xn) =
Y

i

Pr(Xi|parents(Xi))

Joint distribution of variables:



A Simple Example

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

1 - p

pp



A Simple Example

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

1 - p

pp

Pr(X2 = 0| X1 = 0)  = p

….

Pr(X2 = 0| X1 = 1)  = 1 - p



A Simple Example

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

1 - p

pp

Pr(X2 = 0| X1 = 0)  = p

….

Influence of X1 diminishes with distance

Pr(Xi = 0| X1 = 0)  =
1

2
+

1

2
(2p� 1)i�1

Pr(X2 = 0| X1 = 1)  = 1 - p

1

2
� 1

2
(2p� 1)i�1Pr(Xi = 0| X1 = 1)  =



Algorithm: Main Idea

Goal: Protect X1

X1 X2 X3 Xn



Algorithm: Main Idea

Goal: Protect X1

X1 X2 X3 Xn

Local nodes Rest
(high correlation) (almost independent)



Algorithm: Main Idea

Goal: Protect X1

X1 X2 X3 Xn

Add noise to hide
local nodes

Small correction
for rest+

Local nodes Rest
(high correlation) (almost independent)



Measuring “Independence”

Max-influence of Xi on a set of nodes XR:

To protect Xi, correction term needed for XR is 
exp(e(XR|Xi))

e(X

R

|X
i

) = max

a,b

sup

✓2⇥
max

xR

log

Pr(X

R

= x

R

|X
i

= a, ✓)

Pr(X

R

= x

R

|X
i

= b, ✓)

Low e(XR|Xi) means XR is almost independent of Xi



How to find large “almost 
independent” sets

Brute force search is expensive

Use structural properties of the Bayesian network



Markov Blanket

Markov Blanket(Xi) =
Set of nodes XS s.t Xi is 
independent of  X\(Xi U XS)
given XS

(usually, parents, children,
other parents of children)

Xi 

XS 

Markov 
Blanket (Xi)



Define: Markov Quilt

XQ is a Markov Quilt of Xi if:

2. Xi lies in XN

1. Deleting XQ breaks graph 
into XN and XR

3. XR is independent of Xi 

given XQ

Xi 
XQ 

XR 

XN 

(For Markov Blanket XN = Xi)



Why do we need Markov Quilts?

Given a Markov Quilt,

Xi 
XQ 

XR 

XN 

XN = local nodes for Xi 
XQ U XR = rest



 

From Markov Quilts to Amount of Noise

Xi 
XQ 

XR 

XN 
Stdev of noise to protect Xi:

Score(XQ) = 

Correction for XQ U XR 

Noise due to XN 

Let XQ = Markov Quilt for Xi

card(XN )

✏� e(XQ|Xi)

Search all Markov Quilts to find one that needs min noise



Privacy Properties

Privacy: MQM is    -Pufferfish private✏



Graceful Composition

MQM for Markov Chains has:

- Additive sequential composition 

- Parallel composition with a correction term 

X1 X2 X3 Xn



Simulations - Task

X1 X2 X3 Xn

Xi  in {0, 1}

Model:

State Transition Probabilities:

0 1

1 - p

q

1-qp

Model Class:
⇥ = [`, 1� `]

(implies p and q can lie
anywhere in    )⇥

Sequence length = 100



Simulations - Results

Methods:   
- Two versions of Markov Quilt Mechanism (MQMExact, MQMApprox)
- GK16
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Real Data - Activity Measurement

Dataset on physical activity by three groups of subjects: 
40 cyclists, 16 older women and 36 overweight women

4 states (active, standing still, standing moving, sedentary)

Over 9,000 observations per subject

Methods: 

MQMExact and MQMApprox

GK16 does not apply

GroupDP

⇥ = { Empirical data generating distribution } 



Real Data - Activity Measurement

Active Stand Still Stand Moving Sedentary
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Cyclists

Older Overweight

Aggregated results
 (over groups)

✏ = 1



Real Data - Power Consumption

Dataset on power consumption in a single household

Power consumption discretized to 51 levels (51 states)

Over 1 million observations

Methods: 

MQMExact vs. MQMApprox

GK16 does not apply

GroupDP has too little utility 

⇥ = { Empirical data generating distribution } 



Real Data - Power Consumption

Methods:   
Two versions of Markov Quilt Mechanism (MQMExact, MQMApprox)

✏ = 0.2 ✏ = 1



Conclusion

• Real problems have complex privacy challenges

• Rigorous privacy definitions are available

• For any privacy problem, important to think:

• What do we need to hide?

• What do we need to reveal?
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