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Privacy in Statistical Databases

Many domains
• Census 
• Medical
• Advertising
• Education
• …
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Privacy in Statistical Databases

“Aggregate” outputs can leak lots
of information 
• Reconstruction attacks
• Example: Ian Goldberg’s talk on

“the secret sharer”
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!’ is a neighbor of !
if they differ in one data point

local random 
coins

A A(x)

Definition:  A is #, % -differentially private if, 
for all neighbors !, !’, 
for all sets of outputs &

Pr)*+,- *. / 0 ! ∈ & ≤ 34 ⋅ Pr)*+,- *. / 0 !6 ∈ & + %

Neighboring databases 
induce close distributions 
on outputs

Differential Privacy [Dwork, McSherry, Nissim, S. 2006]



Outline

• Local model
• Models for DP + MPC
• Lightweight architectures

Ø “From HATE to LOVE MPC”

• Minimal primitives
Ø “Differential Privacy via Shuffling”
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Local Model for Privacy

• “Local” model
Ø Person ! randomizes their own data
Ø Attacker sees everything except player !’s local state

• Definition: A is "-locally differentially private if for all !:
Ø for all neighbors #, #’, 
Ø for all behavior % of other parties,
Ø for all sets of transcripts &: 

Pr)*+,- ./
0 #, % = 3 ≤ 56 ⋅ Pr)*+,- ./

0 #8, % = 3
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Equivalent to [Efvimievski, 
Gehrke, Srikant ‘03]



Local Model for Privacy
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Local Model for Privacy

• Pros
Ø No trusted curator
Ø No single point of failure
Ø Highly distributed
Ø Beautiful algorithms

• Cons
Ø Low accuracy

• Proportions: Θ "
# $ error [BMO’08,CSS’12] vs %( "$#) central

Ø Correctness requires honesty
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Selection Lower Bounds [DJW’13, Ullman ‘17]

• Suppose each person has ! binary attributes
• Goal: Find index " with highest count (±%)

• Central model: ' = ) log(!)/.% suffices 
[McSherry Talwar ‘07]

• Local model: Any noninteractive local DP protocol 
with nontrivial error requires 

' = Ω(! log(!) /.0)
Ø [DJW’13, Ullman ‘17]
Ø (No lower bound known for interactive protocols)
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1 1 0 0 1 0 1 0 0
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Local Model for Privacy

What other models allow 
similarly distributed trust?
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Outline

• Local model
• Models for DP + MPC
• Lightweight architectures

Ø “From HATE to LOVE MPC”

• Minimal primitives
Ø “Differential Privacy via Shuffling”

14



Two great tastes that go great together

• How can we get accuracy without a trusted curator?
• Idea: Replace central algorithm ! with multiparty computation 

(MPC) protocol for ! (randomized), and either
Ø Secure channels + honest majority
Ø Computational assumptions + PKI

• Questions:
Ø What definition does this achieve?
Ø Are there special-purpose protocols that are more efficient than generic 

reductions?
Ø What models make sense?
Ø What primitives are needed?
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Definitions

What definitions are achieved?
• Simulation of an (", $)-DP protocol
• Computational DP [Mironov, Pandey, Reingold, Vadhan’08]
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A &'

Definition:  A is ((, ", $)-computationally differentially private if, 
for all neighbors ), )’, 
for all distinguishers + ∈ (-./(()

Pr23456 37 ' + 8 ) = 1 ≤ /< ⋅ Pr23456 37 ' + 8 )> = 1 + $

Not 
equivalent



Question 1: Special-purpose protocols
• [Dwork Kenthapadi McSherry Mironov Naor ‘06]

Special-purpose  protocols for generating 
Laplace/exponential noise via finite field arithmetic 
Ø⇒ honest-majority MPC
ØSatisfies simulation, follows existing MPC models
ØLots of follow-up work 

• [He, Machanavajjhala, Flynn, Srivastava ’17, 
Mazloom, Gordon ’17,    maybe  others?]
Use DP statistics to speed up MPC
ØLeaks more than ideal functionality
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Question 2: What MPC models make sense?
• Recall: secure MPC protocols require

ØCommunication between all pairs of parties
ØMultiple rounds, so parties

have to stay online

• Protocols involving all
Google/Apple users
wouldn’t work
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Question 2: What MPC models make sense?
Applications of DP suggest a few different settings
• “Few hospitals”

Ø Small set of computationally powerful data holders
Ø Each holds many participants’ data
Ø Data holders have their own privacy-related concerns

• Sometimes can be modeled explicitly, e.g. [Haney, 
Machanavajjhala, Abowd, Graham, Kutzbach, Vilhuber ‘17]

• Data holders interests may not align with individuals’

• “Many phones”
Ø Many weak clients (individual data holders)
Ø One server or small set of servers
Ø Unreliable, client-server network
Ø Calls for lightweight MPC protocols, e.g.

[Shi, Chan, Rieffel, Chow, Song ‘11, 
Boneh, Corrigan-Gibbs ‘17,
Bonawitz, Ivanov, Kreuter, Marcedone, 

McMahan, Patel, Ramage, Segal, Seth ’17]

DP does not need full MPC
Ø Sometimes, leakage helps [HMFS ’17, MG’17]
Ø Sometimes, we do not know how to take advantage of it

[McGregor Mironov Pitassi Reingold Talwar Vadhan ’10]
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Question 3: What MPC primitives do we need?
• Observation: Most DP algorithms rely on 2 primitives

Ø Addition + Laplace/Gaussian noise
Ø Threshold(summation + noise)

• Sufficient for “sparse vector” and “exponential mechanism”

• [Shafi’s talk mentions others for training nonprivate deep nets.]
Ø Relevant for PATE framework

• Lots of work focuses on addition
Ø “Federated learning”
Ø Relies on users to introduce 

small amounts of noise
• Thresholding remains complicated

Ø Because highly nonlinear
Ø Though maybe approximate thresholding easier (e.g. HEEAN)

• Recent papers look at weaker primitives
Ø Shufflers as a useful primitive 

[Erlingsson, Feldman, Mironov, Raghunathan, Talwar, Thakurta] 
[Cheu, Smith, Ullman, Zeber, Zhilyaev 2018]

20



Outline

• Local model
• Models for DP + MPC
• Lightweight architectures

Ø “From HATE to LOVE MPC”

• Minimal primitives
Ø “Differential Privacy via Shuffling”
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Turning HATE into LOVE MPC
Scalable Multi-Party Computation 

With Limited Connectivity
Leonid Reyzin, Adam Smith, Sophia Yakoubov

https://eprint.iacr.org/2018/997



Goals

• Clean formalism for “many phones” model
• Inspired by protocols of [Shi et al, 2011; Bonawitz et al. 2017]

• Identify 
• Fundamental limits
• Potentially practical protocols
• Open questions
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Can compute differentially private statistic A(X) without server learning anything but the output!
[Dwork,Kenthapadi,McSherry,Mironov,Naor06]
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Y = A(X1, X2, X3, X4)

Y = A(X1, X2, X3, X4)

Can compute differentially private statistic A(X) without server learning anything but the output!
A(X) is often linear, so we will focus on MPC for addition

X4=

Central model 
level accuracy!

Local model 
level privacy!
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Large-scale (millions of clients)
One-server 
Vanishing-participants 
Efficient
MPC

Y = f(X1, X2, …  Xn)

Clients Server
Computational power weak strong

Direct communication only to server to everyone

• Star communication graph, 
as in noninteractive multiparty 
computation (NIMPC)
[Beimel,Gabizon,Ishai,Kushilevitz,Meldgaard,PaskinCherniavsky14]
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Direct communication only to server to everyone

Network unreliable reliable

• Computation must complete 
even if some clients abort



Large-scale (millions of clients)
One-server 
Vanishing-participants 
Efficient 
MPC

Y = f(X1, X2, …  Xn)
• Computation must complete 

even if some clients abort
• Considered in many papers

in the all-to-all communication graph
[Badrinarayanan,Jain,Manohar,Sahai18] 

• Considered in [Bonawitz,Ivanov,Kreuter,Mercedone,McMahan,Patel,Ramage,Segal,Seth17] 

in star communication graph, achieved in 5 message flows

What’s the best we can do?



Our Contributions

• Defining LOVE MPC
• Minimal requirements for LOVE MPC:

• 3 flows
• Setup: correlated randomness of PKI

• Building LOVE MPC for addition
• Main Tool: Homomorphic Ad hoc Threshold Encryption

• Tradeoffs in LOVE MPC
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Our Contributions

• Defining LOVE MPC
• Minimal requirements for LOVE MPC:

• 3 flows
• Some setup: PKI

• Building LOVE MPC for addition
• Main Tool: Homomorphic Ad hoc Threshold Encryption

• Definitions
• Construction: Share-And-Encrypt

• Putting it all together
• Tradeoffs in LOVE MPC



LOVE MPC for Addition
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Open Questions
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Our Contributions

• Defining LOVE MPC
• Minimal requirements for LOVE MPC:

• 3 flows
• Some setup: PKI

• Building LOVE MPC for addition
• Main Tool: Homomorphic Ad hoc Threshold Encryption

• Definitions
• Construction: Share-And-Encrypt

• Putting it all together
• Tradeoffs in LOVE MPC
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Additive HATE
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Outline

• Local model
• Models for DP + MPC
• Lightweight architectures

Ø “From HATE to LOVE MPC”

• Minimal primitives
Ø “Differential Privacy via Shuffling”
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This talk
Like any long, beautiful 
relationship,
it requires work

Your homework:
• Better protocols
• Minimal primitives
• Hybrid models

(see A. Korolova’s talk, I. Goodfellow’s)
ØNonprivate
ØCentral-model DP
ØLocal-model DP

• Think of other models
23
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