

Adam Smith

BU Computer Science PPML 2018 Workshop December 8, 2018

Based on

- L. Reyzin, A. Smith, S. Yakoubov <u>https://eprint.iacr.org/2018/997</u>
- A. Cheu, A. Smith, J. Ullman, D. Zeber, M. Zhilayev
 https://amxiv.org/abs/1202.01204

https://arxiv.org/abs/1808.01394

Privacy in Statistical Databases

Privacy in Statistical Databases

Differential Privacy [Dwork, McSherry, Nissim, S. 2006]

x' is a neighbor of x if they differ in one data point

Neighboring databases induce **close** distributions on outputs

for all neighbors x, x',

Definition: A is (ϵ, δ) -differentially private

for all sets of outputs T

$$\Pr_{\text{coins of } A}(A(\mathbf{x}) \in T) \le e^{\epsilon} \cdot \Pr_{\text{coins of } A}(A(\mathbf{x}') \in T) + \delta$$

Outline

Local model

- Models for DP + MPC
- Lightweight architectures
 "From HATE to LOVE MPC"
- Minimal primitives
 - "Differential Privacy via Shuffling"

Equivalent to [Efvimievski, Gehrke, Srikant '03]

- "Local" model
 - \succ Person *i* randomizes their own data
 - \succ Attacker sees everything except player *i*'s local state

• Definition: A is ϵ -locally differentially private if for all i: \succ for all neighbors $\mathbf{x}, \mathbf{x}',$ \succ for all behavior B of other parties, \succ for all sets of transcripts T: $\Pr_{\text{coins } r_i}(A(\mathbf{x}, B) = t) \le e^{\epsilon} \cdot \Pr_{\text{coins } r_i}(A(\mathbf{x}', B) = t)$

Pros

- No trusted curator
- No single point of failure
- Highly distributed
- Beautiful algorithms

Cons

Low accuracy

- Proportions: $\Theta\left(\frac{1}{\epsilon\sqrt{n}}\right)$ error [BMO'08,CSS'12] vs $O\left(\frac{1}{n\epsilon}\right)$ central
- Correctness requires honesty

Selection Lower Bounds [DJW'13, Ullman '17]

- Suppose each person has k binary attributes
- **Goal**: Find index *j* with highest count $(\pm \alpha)$
- **Central model**: $n = O(\log(k)/\epsilon\alpha)$ suffices [McSherry Talwar '07]
- Local model: Any noninteractive local DP protocol with nontrivial error requires $n = \Omega(k \log(k) / \epsilon^2)$
 - ▷ [DJW'13, Ullman '17]
 - (No lower bound known for interactive protocols)

What other models allow similarly distributed trust?

Outline

- Local model
- Models for DP + MPC
- Lightweight architectures
 "From HATE to LOVE MPC"
- Minimal primitives
 - "Differential Privacy via Shuffling"

Two great tastes that go great together

- How can we get accuracy without a trusted curator?
- Idea: Replace central algorithm A with multiparty computation (MPC) protocol for A (randomized), and either
 - Secure channels + honest majority
 - Computational assumptions + PKI

• Questions:

- > What definition does this achieve?
- Are there special-purpose protocols that are more efficient than generic reductions?
- > What models make sense?
- What primitives are needed?

Definitions

What definitions are achieved?

• Simulation of an (ϵ, δ) -DP protocol

Not equivalent

Computational DP [Mironov, Pandey, Reingold, Vadhan'08]

Definition: A is (t, ϵ, δ) -computationally differentially private if, for all neighbors x, x', for all distinguishers $T \in time(t)$ $\Pr_{\text{coins of }A}(T(A(x)) = 1) \leq e^{\epsilon} \cdot \Pr_{\text{coins of }A}(T(A(x')) = 1) + \delta$

Question 1: Special-purpose protocols

- [Dwork Kenthapadi McSherry Mironov Naor '06]
 Special-purpose protocols for generating
 Laplace/exponential noise via finite field arithmetic
 - $ightarrow \Rightarrow$ honest-majority MPC

> Satisfies simulation, follows existing MPC models

Lots of follow-up work

 [He, Machanavajjhala, Flynn, Srivastava '17, Mazloom, Gordon '17, maybe others?]
 Use DP statistics to speed up MPC

Leaks more than ideal functionality

Question 2: What MPC models make sense?

Recall: secure MPC protocols require

- Communication between all pairs of parties
- Multiple rounds, so parties have to stay online

 Protocols involving all Google/Apple users wouldn't work

Question 2: What MPC models make sense?

Applications of DP suggest a few different settings

• "Few hospitals"

- Small set of computationally powerful data holders
- Each holds many participants' data
- Data holders have their own privacy-related concerns
 - Sometimes can be modeled explicitly, e.g. [Haney, Machanavajjhala, Abowd, Graham, Kutzbach, Vilhuber '17]
 - Data holders interests may not align with individuals'
- "Many phones"
 - Many weak clients (individual data holders)
 - One server or small set of servers
 - Unreliable, client-server network
 - Calls for lightweight MPC protocols, e.g. [Shi, Chan, Rieffel, Chow, Song '11, Boneh, Corrigan-Gibbs '17, Bonawitz, Ivanov, Kreuter, Marcedone, McMahan, Patel, Ramage, Segal, Seth '17]

DP does not need full MPC

- Sometimes, leakage helps [HMFS '17, MG'17]
- Sometimes, we do not know how to take advantage of it [McGregor Mironov Pitassi Reingold Talwar Vadhan '10]

Question 3: What MPC primitives do we need?

- Observation: Most DP algorithms rely on 2 primitives
 - Addition + Laplace/Gaussian noise
 - Threshold(summation + noise)
 - Sufficient for "sparse vector" and "exponential mechanism"
- [Shafi's talk mentions others for training nonprivate deep nets.]
 - Relevant for PATE framework
- Lots of work focuses on addition
 - "Federated learning"
 - Relies on users to introduce small amounts of noise

Thresholding remains complicated

- Because highly nonlinear
- > Though maybe approximate thresholding easier (e.g. HEEAN)
- Recent papers look at weaker primitives
 - Shufflers as a useful primitive [Erlingsson, Feldman, Mironov, Raghunathan, Talwar, Thakurta] [Cheu, Smith, Ullman, Zeber, Zhilyaev 2018]

Outline

- Local model
- Models for DP + MPC
- Lightweight architectures

▷ "From HATE to LOVE MPC"

Minimal primitives

"Differential Privacy via Shuffling"

Turning HATE into LOVE MPC Scalable Multi-Party Computation With Limited Connectivity

Leonid Reyzin, Adam Smith, Sophia Yakoubov

https://eprint.iacr.org/2018/997

Goals

- Clean formalism for "many phones" model
 - Inspired by protocols of [Shi et al, 2011; Bonawitz et al. 2017]
- Identify
 - Fundamental limits
 - Potentially practical protocols
 - Open questions

Large-scale One-server Vanishing-participants Efficient MPC

[Goldreich, Micali, Widgerson 87, Yao 87]

No party learns anything other than the output!

Can compute differentially private statistic A(X) without server learning anything but the output! [Dwork,Kenthapadi,McSherry,Mironov,Naor06]

Can compute differentially private statistic A(X) without server learning anything but the output! A(X) is often linear, so we will focus on MPC for addition

Large-scale One-server Vanishing-participants Efficient MPC

	Clients	Server
Computational power	weak	strong

Large-scale One-server Vanishing-participants Efficient MPC

	Clients	Server
Computational power	weak	strong

	Clients	Server
Computational power	weak	strong

 Star communication graph, as in noninteractive multiparty computation (NIMPC)

[Beimel, Gabizon, Ishai, Kushilevitz, Meldgaard, Paskin Cherniavsky 14]

	Clients	Server
Computational power	weak	strong
Direct communication	only to server	to everyone

 Computation must complete even if some clients abort

	Clients	Server
Computational power	weak	strong
Direct communication	only to server	to everyone
Network	unreliable	reliable

- Computation must complete even if some clients abort
 - Considered in many papers in the all-to-all communication graph [Badrinarayanan,Jain,Manohar,Sahai18]
 - Considered in [Bonawitz, Ivanov, Kreuter, Mercedone, McMahan, Patel, Ramage, Segal, Seth17] in star communication graph, achieved in 5 message flows

What's the best we can do?

- Defining LOVE MPC
- Minimal requirements for LOVE MPC:
 - 3 flows
 - Setup: correlated randomness of PKI
- Building LOVE MPC for addition
 - Main Tool: Homomorphic Ad hoc Threshold Encryption
- Tradeoffs in LOVE MPC

• Defining LOVE MPC

- Minimal requirements for LOVE MPC:
 - 3 flows
 - Setup: correlated randomness or PKI
- Building LOVE MPC for addition
 - Main Tool: Homomorphic Ad hoc Threshold Encryption
- Tradeoffs in LOVE MPC

- Defining LOVE MPC
- Minimal requirements for LOVE MPC:
 - 3 flows
 - Some setup: PKI
- Building LOVE MPC for addition
 - Main Tool: Homomorphic Ad hoc Threshold Encryption
 - Definitions
 - Construction: Share-And-Encrypt
 - Putting it all together
- Tradeoffs in LOVE MPC

	PK Size	Communication Per Party	Message Space Size	Assumption Family
[BIKMMPRSS17]	O(1)	O(n)	any	

			PK Size	Communication Per Party	Message Space Size	Assumption Family
		[BIKMMPRSS17]	O(1)	O(n)	any	
	from HATE	Fully Homomorphic ATE [Badrinarayanan, Jain, Manohar, Sahai 2018]	O(1)	poly(n)	any	lattices
JR WORK	E MPC	Shamir-and- ElGamal	O(1)	O(n)	small	DDH
		CRT-and-Paillier	O(1)	O(n)	any	factoring
õ		Obfuscation	poly(n)	O(1)	small	iO

			PK Size	Communication Per Party	Message Space Size	Assumption Family	Number of Rounds
		[BIKMMPRSS17]	O(1)	O(n)	any		5
	from HATE	Fully Homomorphic ATE [Badrinarayanan, Jain, Manohar, Sahai 2018]	O(1)	poly(n)	any	lattices	3
VORK	E MPC	Shamir-and- ElGamal	O(1)	O(n)	small	DDH	3
JR V	LOV	CRT-and-Paillier	O(1)	O(n)	any	factoring	3
ō		Obfuscation	poly(n)	O(1)	small	iO	3

			PK Size	Communication Per Party		Message Space Size	sage Space Assumption Size Family		Number of Rounds	
				1st	nth			1st	nth	
		[BIKMMPRSS17]	O(1)	O(n)	O(n)	any		5	5	
JR WORK -OVE MPC from HATE	from HATE	Fully Homomorphic ATE [Badrinarayanan, Jain, Manohar, Sahai 2018]	O(1)	poly(n)	poly(n)	any	lattices	3	3	
	E MPC	Shamir-and- ElGamal	O(1)	O(n)	O(n)	small	DDH	3	3	
	P N	CRT-and-Paillier	O(1)	O(n)	O(n)	any	factoring	3	3	
0		Obfuscation	poly(n)	O(1)	O(1)	small	iO	3	3	

			PK Size	Communication Per Party		Message Space Size	essage Space Assumption Size Family		Number of Rounds	
				1st	nth			1st	nth	
		[BIKMMPRSS17]	O(1)	O(n)	O(n)	any		5	5	
rom HATF	from HATE	Fully Homomorphic ATE [Badrinarayanan, Jain, Manohar, Sahai 2018]	O(1)	poly(n)	poly(n)	any	lattices	3	3	
XK	E MPC	Shamir-and- ElGamal	O(1)	O(n)	O(n)	small	DDH	3	3	
NOF	LO<	CRT-and-Paillier	O(1)	O(n)	O(n)	any	factoring	3	3	
UR /		Obfuscation	poly(n)	O(1)	O(1)	small	iO	3	3	
0		Threshold ElGamal	O(1)	O(n)	O(1)	small	DDH	5	3	

Open Questions

			PK Size	Communication Per Party		Message Space Assumption Size Family		Number of Rounds	
				1st	nth			1st	nth
_	_	[BIKMMPRSS17]	O(1)	O(n)	O(n)	any		5	5
rom HATF	from HATE	Fully Homomorphic ATE [Badrinarayanan, Jain, Manohar, Sahai 2018]	O(1)	poly(n)	poly(n)	any	lattices	3	3
×	E MPC	Shamir-and- ElGamal	O(1)	O(n)	O(n)	small	DDH	3	3
VOF		CRT-and-Paillier	O(1)	O(n)	O(n)	any	factoring	3	3
	_	Obfuscation	poly(n)	O(1)	O(1)	small	iO	3	3
		Threshold ElGamal	O(1)	O(n)	O(1)	small	DDH	5	3
		?	O(1)	O(1)	O(1)			3	3

- Defining LOVE MPC
- Minimal requirements for LOVE MPC:
 - 3 flows
 - Some setup: PKI
- Building LOVE MPC for addition
 - Main Tool: Homomorphic Ad hoc Threshold Encryption
 - Definitions
 - Construction: Share-And-Encrypt
 - Putting it all together
- Tradeoffs in LOVE MPC

Homomorphic Ad Hoc Threshold Encryption

Additive HATE

		PK Size	Ciphertext Size	Message Space Size	Assumption Family
	Fully Homomorphic ATE [Badrinarayanan, Jain, Manohar, Sahai 2018]	O(1)	poly(n)	any	lattices
VORK	Shamir-and- ElGamal	mir-and- O(1) amal		small	DDH
JR V	CRT-and-Paillier	RT-and-Paillier O(1)		any	factoring
ŏ	Obfuscation	poly(n)	O(1)	small	iO

Outline

- Local model
- Models for DP + MPC
- Lightweight architectures
 "From HATE to LOVE MPC"
- Minimal primitives
 - "Differential Privacy via Shuffling"

This talk

Like any long, beautiful relationship, it requires work

- Your homework:
- Better protocols
- Minimal primitives
- Hybrid models (see A. Korolova's talk, I. Goodfellow's)

Crypto

- > Nonprivate
- Central-model DP
- Local-model DP
- Think of other models

