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Privacy in Statistical Databases
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Privacy in Statistical Databases
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“Aggregate” outputs can leak lots
of information

* Reconstruction attacks
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* Example: lan Goldberg’s talk on == M- -
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Di el’ential Pl"iV(lC [Dwork, McSherry, Nissim, S. 2006]
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local random i local random
coins coins

x’ is a neighbor of x
if they differ in one data point

Neighboring databases
induce close distributions
on outputs

Definition: A is (¢, §)-differentially private

for all neighbors x, x’,
for all sets of outputs T

(A(x) eT) <e€ (Ax')eT)+6

coms ofA coms of A




Outline

[' Local model }
* Models for DP + MPC

* Lightweight architectures
» “From HATE to LOVE MPC”

* Minimal primitives

» “Differential Privacy via Shuffling”



Local Model for Privacy |

Equivalent to [Efvimievski,
Gehrke, Srikant ‘03]
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* “Local” model
> Person i randomizes their own data

» Attacker sees everything except player i’s local state

» for all neighbors x, x’,
» for all behavior B of other parties,
» for all sets of transcripts T

Pr (A(x,B) =1t) < e€

coins r;

Pr

coins r;

Definition: A is e-locally differentially private if for all i:

(A(x',B) = t)



Local Model for Privacy
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Local Model for Privacy
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° Pros
» No trusted curator
» No single point of failure
» Highly distributed
» Beautiful algorithms
°* Cons
» Low accuracy

* Proportions: 0 (E ) error [BMO’08,CSS’12] vs 0( ) central

» Correctness requires honesty




Selection Lower Bounds [DJW’13, Ullman “17]
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* Suppose each person has k binary attributes
* Goal: Find index j with highest count (£a)

* Central model: n = O(log(k)/ea) suffices
[McSherry Talwar ‘07]

* Local model: Any noninteractive local DP protocol
with nontrivial error requires
n = Q(klog(k) /€?)
> [DJW’13, Ullman ‘17]
» (No lower bound known for interactive protocols)



Local Model for Privacy
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What other models allow
similarly distributed trust?
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* Local model
* Models for DP + MPC |

* Lightweight architectures
» “From HATE to LOVE MPC”

* Minimal primitives

» “Differential Privacy via Shuffling”



Two great tastes that go great together
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°* How can we get accuracy without a trusted curator?

* Idea: Replace central algorithm A with multiparty computation
(MPC) protocol for A (randomized), and either
» Secure channels + honest majority
» Computational assumptions + PKI

* Questions:

» What definition does this achieve?

» Are there special-purpose protocols that are more efficient than generic
reductions?

» What models make sense!?
» What primitives are needed!?




Definitions
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What definitions are achieved!?

Not
* Simulation of an (¢, 6)-DP protocol equivalent

* Computational DP [Mironov, Pandey, Reingold, Vadhan’08]

Definition: Ais (¢, €, d)-computationally differentially private if,
for all neighbors x, x’,

for all distinguishers T € time(t)

(T(A(x)) =1) < e€ (T(A(x))=1)+6

coms of A

coms of A



Question 1: Special-purpose protocols

* [Dwork Kenthapadi McSherry Mironov Naor ‘06]
Special-purpose protocols for generating
Laplace/exponential noise via finite field arithmetic

» = honest-majority MPC
» Satisfies simulation, follows existing MPC models

» Lots of follow-up work

* [He, Machanavajjhala, Flynn, Srivastava |7,
Mazloom, Gordon’l7, maybe others!]

Use DP statistics to speed up MPC

» Leaks more than ideal functionality



Question 2: What MPC models make sense?

* Recall: secure MPC protocols require

» Communication between all pairs of parties

» Multiple rounds, so parties
have to stay online

* Protocols involving all
Google/Apple users
wouldn’t work




Question 2: What MPC models make sense?

Applications of DP suggest a few different settings

g £ F
* “Few hospitals” ¢ \\[ /% /;,
4

» Small set of computationally powerful data holders ?\\ .
» Each holds many participants’ data ?;@é L I
» Data holders have their own privacy-related concerns ?/ N
* Sometimes can be modeled explicitly, e.g. [Haney, = \ﬁf
Machanavajjhala, Abowd, Graham, Kutzbach, Vilhuber ‘17] / £
. . T ) & / \5
* Data holders interests may not align with individuals ¢ 4 &
o

* “Many phones”
» Many weak clients (individual data holders)
» One server or small set of servers
» Unreliable, client-server network

» Calls for lightweight MPC protocols, e.g.
[Shi, Chan, Rieffel, Chow, Song ‘I I,
Boneh, Corrigan-Gibbs ‘17,
Bonawitz, lvanov, Kreuter, Marcedone,
McMahan, Patel, Ramage, Segal, Seth ’17]

DP does not need full MPC
» Sometimes, leakage helps [HMFS 17, MG’ 17]

» Sometimes, we do not know how to take advantage of it
[McGregor Mironov Pitassi Reingold Talwar Vadhan ’10]




Question 3: What MPC primitives do we need?

Observation: Most DP algorithms rely on 2 primitives
» Addition + Laplace/Gaussian noise

» Threshold(summation + noise)
* Sufficient for “sparse vector” and “exponential mechanism”

[Shafi’s talk mentions others for training nonprivate deep nets.]
» Relevant for PATE framework
» _

-
Lots of work focuses on addition * + * — *
-
3

> “Federated learning”
» Relies on users to introduce 1 + 2 —

small amounts of noise

Thresholding remains complicated
» Because highly nonlinear
» Though maybe approximate thresholding easier (e.g. HEEAN)

Recent papers look at weaker primitives

» Shufflers as a useful primitive

[Erlingsson, Feldman, Mironov, Raghunathan, Talwar, Thakurta]
[Cheu, Smith, Ullman, Zeber, Zhilyaev 2018]

20



Outline

* Local model
* Models for DP + MPC

[' Lightweight architectures }
» “From HATE to LOVE MPC”

* Minimal primitives

» “Differential Privacy via Shuffling”
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Turning HATE into LOVE MPC

Scalable Multi-Party Computation
With Limited Connectivity

Leonid Reyzin, Adam Smith, Sophia Yakoubov

https://eprint.iacr.org/2018/997



Goals

* Clean formalism for “many phones” model
* Inspired by protocols of [Shi et al, 2011; Bonawitz et al. 2017]

* |dentify
* Fundamental limits
» Potentially practical protocols
* Open questions



MPC

[Goldreich,Micali,Widgerson87,Yao87]

Y= f(Xl, Xz, X3, X4)
Y= f(Xl, X2, X3, X4)

Y= f(Xl, X2, X3, X4)

[ No party learns anything other than the output! ]




MPC

Y = A(Xyq, Xy, X3, X4)

Y = A(Xy, X5, X3, Xg)

t

Central model
level accuracy!
. J

Y = A(Xy, Xy, X3, X4) Local model

level privacy!

Can compute differentially private statistic A(X) without server learning anything but the output!
[Dwork,Kenthapadi,McSherry,Mironov,Naor06]
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MPC

Y= A(Xll XZ; X3I X4)

Y = A(Xy, X5, X3, Xg)

t

level accuracy!
. J

Central model

Local model
level privacy!

Can compute differentially private statistic A(X) without server learning anything but the output!

A(X) is often linear, so we will focus on MPC for addition




One-server

MPC

Y= f(Xl, X2, X3, X4)

X3

| cems | sever

Computational power weak strong



One-server

Efficient
MPC

Y= f(Xl, X2, X3, X4)

?;3

| cems | sever

Computational power weak strong
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Large-scale (millions of clients)

One-server
Efficient
MPC

Clients

strong

weak

Computational power



Large-scale (millions of clients)
One-server ﬁf’? E ¢

MPC

e Star communication graph, ?
as in noninteractive multiparty %
computation (NIMPC)

[Beimel,Gabizon,Ishai,Kushilevitz,Meldgaard,PaskinCherniavsky14] ?

| cems | sever

Computational power weak strong

- ¢
Efficient 3
¢

Direct communication only to server to everyone



Large-scale (millions of clients)
One-server
Vanishing-participants ¢

i ¢
Efficient 3
¢

MPC

* Computation must complete ?f
even if some clients abort

| cems | sever

Computational power weak strong
Direct communication only to server to everyone

Network unreliable reliable



Large-scale (millions of clients)
One-server ?ﬁ 44 ¢
Vanishing-participants ¢

i ¢
Efficient 3
¢

MPC

* Computation must complete ?

: ) e Xp)
even if some clients abort

* Considered in many papers ?f ?«, ?y ?{, ?yiy

in the all-to-all communication graph
[Badrinarayanan,Jain,Manohar,Sahail8]

e Considered in [Bonawitz,Ivanov,Kreuter,Mercedone,McMahan,Patel,Ramage,Segal,Seth17]
in star communication graph, achieved in 5 message flows

[ What’s the best we can do? }




Our Contributions

* Defining LOVE MPC

* Minimal requirements for LOVE MPC:

* 3 flows
» Setup: correlated randomness of PKI

* Building LOVE MPC for addition
* Main Tool: Homomorphic Ad hoc Threshold Encryption

* Tradeoffs in LOVE MPC



Our Contributions

* Minimal requirements for LOVE MPC:

* 3 flows
» Setup: correlated randomness or PKI



Our Contributions

PKI

* Building LOVE MPC for addition

* Main Tool: Homomorphic Ad hoc Threshold Encryption
* Definitions
* Construction: Share-And-Encrypt

* Putting it all together



LOVE MPC for Addition

Communication | Message Space Assumption
Per Party Size Family

[BIKMMPRSS17] 0O(1) O(n)



LOVE MPC for Addition

Communication | Message Space Assumption
Per Party Size Family

OUR WORK

LOVE MPC from HATE

[BIKMMPRSS17] O(1) O(n)

Fully 0O(1) poly(n) any lattices
Homomorphic

ATE

[Badrinarayanan, Jain,

Manohar, Sahai 2018]

Shamir-and- 0(1) O(n) small DDH
ElGamal

CRT-and-Paillier 0(1) O(n) any factoring
Obfuscation poly(n) 0(1) small i0



LOVE MPC for Addition

Communication | Message Space Assumption Number of
Per Party Size Family Rounds

OUR WORK

LOVE MPC from HATE

[BIKMMPRSS17] O(1) O(n)

Fully 0O(1) poly(n) any lattices 3
Homomorphic

ATE

[Badrinarayanan, Jain,

Manohar, Sahai 2018]

Shamir-and- 0(1) O(n) small DDH 3
ElGamal

CRT-and-Paillier 0(1) O(n) any factoring
Obfuscation poly(n) 0(1) small i0



OUR WORK

LOVE MPC from HATE

LOVE MPC for Addition

Communication | Message Space
Per Party Size

[BIKMMPRSS17]

Fully
Homomorphic
ATE

[Badrinarayanan, Jain,
Manohar, Sahai 2018]

Shamir-and-
ElGamal

CRT-and-Paillier

Obfuscation

0(1)
0(1)

0(1)

0(1)
poly(n)

1st nth
O(n) O(n) any
poly(n) poly(n)

Q

ny

O(n) O(n) small

O(n) O(n) any
0(1) 0O(1) small

Assumption
Family

lattices

DDH

factoring
i0

Number of

Rounds

1st

nth



OUR WORK

LOVE MPC from HATE

LOVE MPC for Addition

Communication
Per Party

[BIKMMPRSS17]

Fully
Homomorphic
ATE

[Badrinarayanan, Jain,
Manohar, Sahai 2018]

Shamir-and-
ElGamal

CRT-and-Paillier
Obfuscation

Threshold
ElGamal

0(1)
0(1)

0(1)

0(1)

poly(n)
0(1)

1st
O(n)
poly(n)
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O(n)
0O(1)
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O(n)

O(n)
0(1)
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Open Questions

Communication
Per Party

1st

nth

Message Space
Size

Assumption
Family

Number of

Rounds

1st

nth

[BIKMMPRSS17] 0O(1) O(n) O(n) any 5
Fully 0O(1) poly(n) poly(n) any lattices 3
E Homomorphic
T | ATE
€ [Badrinarayanan, Jain,
'_g Manohar, Sahai 2018]
& | Shamir-and- 0O(1) O(n) O(n) small DDH 3
=
x " ElGamal
g Q CRT-and-Paillier 0(1) O(n) O(n) any factoring 3
= Obfuscation poly(n) 0O(1) 0O(1) small i0 3
©|" Threshold o(1) o(n) o)  small DDH 5
ElGamal
? 0O(1) 0O(1) 0O(1) 3



Our Contributions

* Main Tool: Homomorphic Ad hoc Threshold Encryption
* Definitions
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Ciphertext [ Encrypt
. c PK
Threshold Encryption
3 C

EDartDecrypt ‘ Partial Decryption
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PartDecrypt Plaintext
6)% FinalDecrypt X
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Ciphertext [ Encrypt
¢ ZIPK 0

C

PartDecrypt Partial Decryption
= d
C
PartDecrypt Plaintext
6)% FinalDecrypt X
C

PartDecrypt Partial Decryption Can rg;:]:)ver X
@)% d ! .
t of n parties provide d




Ad HOC Ciphecrtex‘t‘
Threshold Encryption

C

l

Par‘tI‘D_ecny-p’t‘ ") Partial Decryption
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PartDecrypt
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PartDecrypt Partial Decryption Can re.;:fover X
’ i

d
63% t of n parties provide d

Plaintext
FinalDecrypt X




Homomorphic
Ad Hoc
Threshold Encryption ..
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Additive HATE

Ciphertext Size | Message Space Assumption
Size Family

Fully 0(1) poly(n) lattices
Homomorphic
ATE

[Badrinarayanan, Jain,
Manohar, Sahai 2018]

OUR WORK

Shamir-and- 0(1) O(n) small DDH
ElGamal
CRT-and-Paillier 0(1) O(n) any factoring

Obfuscation poly(n) 0(1) small i0




Outline

* Local model
* Models for DP + MPC

* Lightweight architectures
» “From HATE to LOVE MPC”

[' Minimal primitives }

» “Differential Privacy via Shuffling”
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This talk

Like any long, beautiful
relationship,
it requires work

Private
Crypto || data
analysis

Your homework:

* Better protocols

* Minimal primitives

* Hybrid models
(see A. Korolova’s talk, |. Goodfellow’s)

» Nonprivate

» Central-model DP
» Local-model DP

* Think of other models
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