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Abstract

Although machine learning models trained on massive data have led to break-
throughs in several areas, their deployment in privacy-sensitive domains remains
limited due to restricted access to data. Generative models trained with privacy
constraints on private data can sidestep this challenge and provide indirect access to
the private data instead. We propose DP-Sinkhorn, a novel optimal transport-based
generative method for learning data distributions from private data with differen-
tial privacy. Compared to GAN-based methods, DP-Sinkhorn does not rely on
adversarial objects, making it easy to train and deploy. Experimentally, despite
our method’s simplicity we improve upon the state-of-the-art on multiple image
modeling benchmarks. We also show differentially private synthesis of informative
RGB images, which has not been demonstrated before by differentially private
generative models without the use of auxiliary public data.

1 Introduction

Differential Privacy (DP) is a rigorous definition of privacy that quantifies the amount of information
leaked by a user participating in any data release (1; 2). It has been widely used in ML applications
to protect the privacy of data used in training (3). DP learning of generative models has been studied
mostly under the Generative Adversarial Networks (GAN) framework (4; 5; 6; 7; 8). While GANs in
the non-private setting are successful in synthesizing complex data like high definition images (9; 10),
their application in the private setting is more challenging. This is in part because GANs suffer from
training instability problems (11; 12), which can be exacerbated when adding noise to the network’s
gradients during training, a common technique to implement DP. Thus, GANs typically require
careful hyperparameter tuning and supervision during training to avoid model collapse. This goes
against the principle of privacy, where repeated interactions with data need to be avoided (13).

Optimal Transport (OT) is another method to train generative models. In the optimal transport
setting, the problem of learning a generative model is framed as minimizing the optimal transport
distance, a type of Wasserstein distance, between the generator-induced distribution and the real
data distribution (14; 15). Unfortunately, exactly computing the OT distance is generally expensive.
Nevertheless, Wasserstein distance-based objectives are actually widely used to train GANs (16; 17).
However, these approaches typically estimate a Wasserstein distance using an adversarially trained
discriminator. Hence, training instabilities remain (12).

An alternative to adversarial-based OT estimation is provided by the Sinkhorn divergence (18; 19; 20).
The Sinkhorn divergence is an entropy-regularized version of the exact OT distance, for which the
optimal transport plan can be computed efficiently via the Sinkhorn algorithm (21). In this paper,
we propose DP-Sinkhorn, a novel method to train differentially private generative models using
the Sinkhorn divergence as objective. Since the Sinkhorn approach does not intrinsically rely on
adversarial components, it avoids any potential training instabilities and removes the need for early
stopping. This makes our method easy to train and deploy in practice. As a side, we also develop a
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Figure 1: Flow diagram of DP-Sinkhorn for a single training iteration: Sensitive training data is
combined with non-sensitive generated data in the cost matrix. Then, the loss is calculated using
the Sinkhorn algorithm. In the backward pass, we impose a privacy barrier behind the generator by
clipping and adding noise to the gradients at the generated image level, similar to (8).

simple yet effective way to perform conditional generation in the Sinkhorn framework, by forcing
the optimal transport plan to couple same-label data closer together. To the best of our knowledge,
DP-Sinkhorn is the first fully OT-based approach for differentially private generative learning.

Experimentally, despite its simplicity DP-Sinkhorn achieves state-of-the-art results on image-based
classification benchmarks that use data generated under differential privacy for training. We can also
generate informative RGB images, which, to the best of our knowledge, has not been demonstrated
by any generative models trained with differential privacy and without auxiliary public data.

We make the following contributions: (i) We propose DP-Sinkhorn, a flexible and robust optimal
transport-based framework for training differentially private generative models. (ii) We introduce a
simple technique to perform label-conditional synthesis in the Sinkhorn framework. (iii) We achieve
state-of-the-art performance on widely used image modeling benchmarks. (iv) We present informative
RGB images generated under strict differential privacy without the use of public data.

2 Differentially Private Sinkhorn with Class Conditioning

For background and standard definitions, please see Appendix B. We propose DP-Sinkhorn, an OT-
based method to learn differentially private generative models, which avoids the training instability
problems characteristic for GAN-based techniques (algorithms are presented in Appendix C).

Definition 2.1 (Empirical Sinkhorn loss) The empirical Sinkhorn loss computed over a batch of N
generated examples and M real examples is defined as (19):

Ŝc,ε(X,Y) = 2CXY � P ∗ε,X,Y − CXX � P ∗ε,X,X − CY Y � P ∗ε,Y,Y (1)

where � denotes the Frobenius product. For two samples A ∈ XN and B ∈ XM , CAB is the
cost matrix obtained by applying cost function c(a, b) to elements of A and B, and P ∗ε,A,B is an
approximate optimal transport plan that minimizes Eqn. 4 computed by the Sinkhorn algorithm (21).

We use the empirical Sinkhorn loss between batches of real (Y) and generated data (X) as objective
and use a simple pixel-wise L2-loss for c. See Appendix Algorithm 3 for a precise description of our
method.

To conditionally generate images given a target class, we inject class information to both the generator
and the Sinkhorn loss function during training. For the generator, we supply the class label either by
concatenating an embedding of it with the sampled latent code (on DCGAN-based generators), or
by using class conditioned batch-norm layers (on BigGAN-based generators). For the loss function,
we concatenate a scaled one-hot class embedding to both the generated images and real images.
Intuitively, this works by increasing the cost between image pairs of different classes, hence shifting
the weight of the transport plan (P ∗ε in Eq. 6 in Appendix B) towards class-matched pairs. Uniformly
sampled labels are used for the generated images and the real label is used for real images. Let lx and
ly denote the labels of x and y. The class-conditional pixel-wise and label loss is:

cpixel([x, lx], [y, ly]) =
∣∣∣∣[x, αc ∗ onehot(lx)]T − [y, αc ∗ onehot(ly)]T

∣∣∣∣2
2
. (2)
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To our best knowledge, we are the first to propose a class-conditioning method for the Sinkhorn
divergence framework. This may be of independent interest in non-private learning settings.

For privacy protection, rather than adding noise to the gradients of the generator parameters θ,
we add noise to the gradients of the generated images ∇XŜ, which is then backpropagated to θ.
Compared to ∇θŜ, the dimension of ∇XŜ is independent from the network architecture. This
allows us to train larger networks without requiring more aggressive clipping. This method has been
independently proposed by (8). In each iteration, gradient descent updates the generator parameters
by backpropagating the “image gradient” ∇XŜ. We clip this term such that ||∇XŜ||2 ≤ C. The
sensitivity is thus maxY,Y′ ||∇XŜ(X,Y)−∇XŜ(X,Y′)||2 ≤ 2C. By adding Gaussian noise with
scale 2Cσ, the mechanism satisfies (α, αC

2

2σ2 )-RDP (22). We use the RDP accountant with Poisson
subsampling proposed in (23) for privacy composition. Note that the batch size of X is kept fixed,
while batch size of Y follows a binomial distribution due to Poisson subsampling.

3 Experiments

We conduct labelled image generation experiments on 3 datasets: MNIST (24), Fashion-MNIST
(25), and CelebA (26) downsampled to 32x32. We evaluate the usefulness of synthetic data for
downstream tasks by measuring the accuracy of classifiers trained on synthetic data and tested on
real data. We also compute FID (27) scores as a measure of visual quality. Full experimental details
can be found in Appendix D.

MNIST & Fashion-MNIST We train shallow convolutional networks based on DCGAN (28).
Given the same privacy budget, DP-Sinkhorn generates more informative examples than previous
methods, as demonstrated by the higher accuracy achieved by the downstream classifier. The FID of
images generated by DP-Sinkhorn is lower than all baselines, except GS-WGAN (8). We believe this
is due to the lack of edge sharpness in images generated by DP-sinkhorn, and attribute this to the
choice of L2 pixel distance as our transport cost function as shown in Figure 2.

Table 1: Differentially private image generation results on MNIST and Fashion-MNIST at (10, 10−5)-
DP. Results for other methods (DP-CGAN, DP-MERF AE (29), and GS-WGAN (8)) are from (8).
Results are averaged over 5 runs of synthetic dataset generation.

Method DP-ε
MNIST Fashion-MNIST

FID Acc (%) FID Acc (%)

Log Reg MLP CNN Log Reg MLP CNN

Real data ∞ 1.6 92.2 97.5 99.3 2.5 84.5 88.2 90.8
Non-priv Sinkhorn ∞ 84.1 88.6 88.2 87.9 105.2 77.6 78.7 72.8

DP-CGAN 10 179.2 60 60 63 243.8 51 50 46
DP-MERF AE1 10 161.1 54 55 68 213.6 50 56 62
GS-WGAN 10 61.3 79 79 80 131.3 68 65 65
DP-Sinkhorn 10 124.3 82.0 80.8 79.9 193.8 73.4 72.2 67.5

CelebA For CelebA we use the deeper BigGAN (9) as generator backbone. To the extent of our
knowledge, no DP generative learning method has been applied on such RGB image data without
accessing public data. We evaluate whether DP-Sinkhorn is able to synthesize RGB images that are
informative for downstream classification. Furthermore, we study whether an adversarial learning
scheme is helpful for learning this dataset. We test this by using an adversarially trained feature
extractor in the cost function. Given feature extractor φ, we modify the cost function as:

cadv([x, lx], [y, ly]) =

∣∣∣∣∣∣∣∣[x, αc ∗ onehot(lx),
αaφ(x)

||φ(x)||2
]T − [y, αc ∗ onehot(ly),

αaφ(y)

||φ(y)||2
]T
∣∣∣∣∣∣∣∣2

2

.

(3)
Training proceeds through alternating updates. To make this learning scheme private, we randomly
split the training dataset into k partitions and train one discriminator per partition. This way, the

1DP-MERF is designed for the low-ε regime and does not make use of the extra privacy budget from ε = 10.
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gradient computed on each partition can benefit from privacy amplification by subsampling. Privacy
accounting for this setting is performed through (30), which analyzes fixed-size batch subsampling.

We find that while using the adversarial feature extractor is beneficial in the non-private case, it did
not provide significant improvements in the private case, as shown in Table 2. We hypothesize that
clipping and gradient noise counteracts the effect of gradient shaping provided by the adversarial
feature extractor, resulting in similar learning performance as in the non-adversarial approach. Despite
its simplicity, DP-Sinkhorn generates informative data for gender classification. Qualitatively, Figure
3 illustrates that DP-Sinkhorn can learn rough representations of each semantic class (male and
female) and also produces some in-class variations.

Figure 2: Samples from (10, 10−5)-DP models. Comparison with other methods can be found in
Appendix E.

Table 2: Differentially private image generation results on downsampled CelebA .
Method (ε, 10−6)-DP FID MLP Acc (%) CNN Acc (%)

Real data ∞ 1.1 91.9 95.0
Adversarial Sinkhorn (non-priv) ∞ 72.8 78.1 78.2
Pixel Sinkhorn (non-priv) ∞ 140.7 78.9 77.9

Adversarial DP-Sinkhorn 10 187.0 74.7 74.5
Pixel DP-Sinkhorn 10 168.4 76.2 75.8

Figure 3: Images Generated on CelebA dataset. From top to botton: Adversarial Sinkhorn, Pixel
Sinkhorn, Adversarial DP-Sinkhorn, Pixel DP-Sinkhorn.

4 Conclusions

We propose DP-Sinkhorn, a novel OT-based differentially private generative modeling method. Our
approach minimizes the empirical Sinkhorn loss in a differentially private manner and does not require
any adversarial techniques. Therefore, DP-Sinkhorn is easy to train and deploy, which we hope will
help its adoption in practice. We also use a novel trick to force the optimal transport plan to couple
same-label data together, thereby allowing for conditional data generation in the Sinkhorn divergence
generative modeling framework. Our proposed method and demonstrate superior performance
compared to the previous state-of-the-art in utility of generated data, as shown through downstream
classification benchmarks. We also show DP synthesis of informative RGB images without using
additional public data. Note that our main experiments only used a simple pixel-wise L2-loss as cost
function. This suggests that in the differential privacy setting, where significant gradient perturbations
are added to the model, complexity in model and objective are not necessarily beneficial. We conclude
that simple and robust models such as ours are a promising direction for DP generative modeling.
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A Related Works

Our method compares favorably against prior works that use GAN-based training schemes (4; 5; 6; 7;
8) due to training stability. As discussed, this is critical in the context of differential privacy, where
the imposed gradient noise can increase training instabilities and where interaction with private data
should be limited. It is worth noting that (8) proposed the same privacy barrier mechanism like us by
applying gradient noise on the generated images rather than the generator parameters. Other types of
generative models, including likelihood based models (31) and MMD with random Fourier features
(29) have also been studied in the privacy preserving setting. DP-Sinkhorn is more expressive and
thus fits real distributions more faithfully. Lastly, while (32) produced strong empirical results, their
privacy analysis relies on the use of Wishart noise on sample covariance matrices, which has been
proven to leak privacy (33). Hence, their privacy protection is invalid in its current form.

B Background

B.1 Notations and Setting

Let X denote a sample space, P(X ) all possible measures on X , and Z ⊆ Rd the latent space. We
are interested in training a generative model g : Z 7→ X such that its induced distribution µ = g ◦ ξ
with noise source ξ ∈ P(Z) is similar to observed ν through an independently sampled finite sized
set of observations D = {y}N . In our case, g is a trainable parametric function with parameters θ.
We denote the Dirac delta distribution at x ∈ X as δx, and the standard n-simplex as Sn.

B.2 Generative Learning with Optimal Transport

Optimal Transport-based generative learning considers minimizing variants of the Wasserstein
distance between real and generated distributions (14; 15). Two key advantages of the Wasserstein
distance over standard GANs, which optimize the Jensen-Shannon divergence (34), are its definiteness
on distributions with non-overlapping supports, and its weak metrization of probability spaces (16).
This prevents collapse during training caused by discriminators that are overfit to the training
examples.

Methods implementing the OT framework use either the primal or the dual formulation. For gen-
erative learning, the dual formulation has been more popular. Under the dual formulation, the
distance between the generator-induced and the data distribution is computed as the expectation of
potential functions over the sample space. In WGAN and variants (16; 35; 36), the dual potential is
approximated by an adversarially trained discriminator network. While theoretically sound, these
methods still encounter instabilities during training since the non-optimality of the discriminator
can produce arbitrarily large biases in the generator gradient (14). The primal formulation involves
solving for the optimal transport plan—a joint distribution over the real and generated sample spaces.
The distance between the two distributions is then measured as the expectation of a point-wise
cost function between pairs of samples as distributed according to the transport plan. Thus, the
properties of the point-wise cost function are of great importance. In practice, sufficiently convex
cost functions allow for an efficient optimization of the generator. It is also possible to learn cost
functions adversarially (37). However, as discussed earlier, adversarial training often comes with
additional challenges, which can be especially problematic in the differential privacy setting.

In general, finding the optimal transport plan is a difficult optimization problem due to the constraints
of equality between its marginals and the real and generated distributions. Entropy Regularized
Wasserstein Distance (ERWD) imposes a strongly convex regularization term on the Wasserstein
distance, making the OT problem between finite samples solvable in linear time (38). Given a positive
cost function c : X × X 7→ R+ and ε ≥ 0, the Entropy Regularized Wasserstein Distance is defined
as:

Wc,ε(µ, ν) = min
π∈Π

∫
c(x, y)π(x, y) + ε

∫
log

π(x, y)

dµ(x)dν(y)
dπ(x, y) (4)

where Π =
{
π(x, y) ∈ P(X × X )|

∫
π(x, ·)dx = ν,

∫
π(·, y)dy = µ

}
. Sinkhorn divergence uses

cross correlation terms to cancel out the entropic bias introduced by ERWD. This results in faithful
matching between the generator and real distributions. In this paper, we use the Sinkhorn divergence
as defined in (19).
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Definition B.1 (Sinkhorn Loss) The Sinkhorn loss between measures µ and ν is defined as:

Sc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν) (5)

For modeling data-defined distributions, as in our situation, an empirical version can be defined, too.

Definition B.2 (Empirical Sinkhorn loss) The empirical Sinkhorn loss computed over a batch of N
generated examples and M real examples is defined as:

Ŝc,ε(µ̂, ν̂) = 2CXY � P ∗ε,X,Y − CXX � P ∗ε,X,X − CY Y � P ∗ε,Y,Y (6)

where µ̂ = 1
N

∑N
i=1 δxi

, and ν̂ = 1
M

∑M
j=1 δyj . For two samples A ∈ XN and B ∈ XM , CAB

is the cost matrix between A and B, and P ∗ε,A,B is an approximate optimal transport plan that
minimizes Eqn. 4 computed over A and B.

P ∗ε is arrived at by iterating the dual potentials.

(21) and (19) have shown the following dual formulation for the discritized version of Ŵc,ε:

Ŵc,ε(µ̂, ν̂) = max
f,g∈SN×SM

〈µ̂, f〉+ 〈ν̂, g〉 − ε〈µ̂⊗ ν̂, exp(
1

ε
(f ⊕ g − C))− 1〉, (7)

where ⊗ denotes the product measure and ⊕ denotes the “outer sum” such that the output is a matrix
of the sums of pairs of elements from each vector. Then, the optimal transport plan P ∗ε relates to the
dual potentials by P ∗ε = exp( 1

ε (f ⊕ g − C))(µ̂⊗ ν̂). Thus, once we find the optimal f and g, we
can obtain P ∗ε through this primal-dual relationship. We also know the first-order optimal conditions
for f and g through the Karush Kuhn Tucker theorem:

fi = −ε log

M∑
j=1

exp(log(ν̂j)+
1

ε
gj−

1

ε
C(xi, yj)) gj = −ε log

N∑
i=1

exp(log(µ̂i)+
1

ε
fi−

1

ε
C(xi, yj))

(8)
To optimize f and g, it suffices to apply the Sinkhorn algorithm (21), see Algorithm 2 in the main
text.

Works on the efficient computation of the Sinkhorn divergence have yielded algorithms that converge
to the optimal transport plan within tens of iterations (21; 19). Gradient computation follows by
taking the Jacobian vector product between the cost matrix Jacobian and the transport weights, which
is efficiently implemented in many reverse-mode auto-differentiation frameworks. The above loss
easily extends to the setting of empirical data-defined distributions, which is the situation we are
interested in.

B.3 Differential Privacy

The current gold standard for measuring the privacy risk of data releasing programs is the notion of
differential privacy (DP) (1).

Definition B.3 (Differential Privacy) A randomized mechanismM : D → R with domain D and
range R satisfies (ε, δ)-DP if for any two adjacent inputs d, d′ ∈ D differing by at most one entry,
and for any subset of outputs S ⊆ R it holds that

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] + δ. (9)

Informally, DP measures to what degree a program’s output can deviate between adjacent input
datasets—sets which differ by one entry. For a user contributing their data, this translates to a
guarantee on how much an adversary could learn about them from observing the program’s output. In
this paper, we are interested in the domain of image-label datasets where each image and its semantic
label constitute an entry.

Gradient perturbation with the Gaussian mechanism is the most popular method for DP learning of
parametric models. During stochastic gradient descent (SGD) and variants, the parameter gradients
are clipped in 2-norm by a constant, and then Gaussian noise is added. By adding a sufficient amount
of noise, the gradients can satisfy DP requirements. Then, the post-processing property of differential
privacy (2) guarantees that the parameters are also private. The relation between (ε, δ) and the
perturbation parameters ∆ and σ is provided by the following theorem:
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Theorem B.1 For c2 > 2 log(1.25/δ), Gaussian mechanism with σ ≥ c∆/ε satisfies (ε, δ) differen-
tial privacy. (2)

As SGD involves computing the gradients on randomly drawn batches of data for multiple iterations,
two other properties of DP, composition and subsampling are required to analyze the privacy of the
algorithm. Rényi Differential Privacy (RDP) is a well-studied formulation of privacy that allows tight
composition of multiple queries, and can be easily converted to standard definitions of DP.

Definition B.4 (Rényi Differential Privacy) A randomized mechanismM : D → R with domain D
and rangeR satisfies (α, ε)-RDP if for any adjacent d, d′ ∈ D it holds that

Dα(M(d)|M(d′)) ≤ ε, (10)
where Dα is the Rényi divergence of order α. Also, anyM that satisfies (α, ε)-RDP also satisfies
(ε+ log 1/δ

α−1 , δ)-DP (22).

For clipping threshold ∆ and standard deviation of Gaussian noise σ, the Gaussian mechanism
satisfies (α, α∆2/(2σ2))-RDP (22). Subsampling the dataset into batches also improves privacy.
The effect of subsampling on the Gaussian mechanism under RDP has been studied in (30; 39; 23).
Privacy analysis of a gradient-based learning algorithm entails accounting for the privacy cost of
single queries, which corresponds to training iterations in our case, possibly with subsampling due to
mini-batched training. The total privacy cost is obtained by summing up the privacy cost across all
queries or training steps, and then choosing the best α. For completeness, the Rényi divergence is

defined as: Dα(P |Q) = 1
α logEx∈Q

[
P (x)
Q(x)

]α
.

C Algorithms

Algorithm 1 Poisson Sample

Input : d = {(y, l) ∈ X × {0, ..., L}}M ,
sampling ratio q
Output: Y = {(yj , lj) ∈ X ×{0, ..., L}}mj=1,
m ≥ 0

s = {σi}Mi=1
i.i.d.∼ Bernoulli(q)

Y = {dj |sj = 1}Mj=1

Algorithm 2 Sinkhorn Algorithm Ŵε(X,Y)

Input: X = {x}n,Y = {y}m, ε
Output: Wε

∀(i, j), C[i,j] = c(Xi,Yj)

f ,g← ~0
µ̂, ν̂ ← Unif(n),Unif(m)
while not converged do
∀i, fi ← −ε log

∑m
k=1 exp(log(ν̂k) +

1
ε
gk − 1

ε
C[i,k])

∀j,gj ← −ε log
∑n
k=1 exp(log(µ̂k) +

1
ε
fk − 1

ε
C[k,j])

end while
Wε = 〈µ̂, f〉+ 〈ν̂,g〉

Algorithm 3 DP-Sinkhorn
L is number of categories, X is sample space.
M is size of private data set. backprop is a
reverse mode auto-differentiation function that
takes ‘out’, ‘in’ and ‘grad weights’ as input and
computes the Jacobian vector product
Jin(out) · grad weights.

Input: private data set d = {(y, l) ∈ X ×
{0, ..., L}}M , sampling ratio q, noise scale σ, clip-
ping coefficient ∆, generator gθ , learning rate α,
entropy regularization ε, total steps T .
Output: θ
n = q ∗M
for t = 1 to T do

Sample Y ← Poisson Sample(d, q),

Z ← (zi)
n
i=1

i.i.d.∼ Unif(0, 1)

Lx ← {li}ni=1
i.i.d.∼ Unif(0, ..., L)

X← {xi = gθ(zi, li)}ni=1

gradX ← ∇X

[
2Ŵε(X,Y)− Ŵε(X,X)

]
gradX ← clip(gradX,∆) + 2∆σN (~0, I)
gradθ ← backprop(X, θ, gradX)
θ ← θ − α ∗Adam(gradθ)

end for

D Experiment Details

D.1 Datasets

MNIST and Fashion-MNIST both consist of 28x28 grayscale images, partitioned into 60k training
images and 10k test images. The 10 labels of the original classification task correspond to digit/object
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class. For calculating FID scores, we repeat the channel dimension 3 times. CelebA is composed
of ∼200k colour images of celebrity faces tagged with 40 binary attributes. We downsample all
images to 32x32, and use all 162770 train images for training and all 19962 test images for evaluation.
Generation is conditioned on the gender attribute.

D.2 Metrics

In all experiments, we compute metrics against a synthetic dataset of 60k image-label pairs sampled
from the model. Each sample is formed by selecting a class uniformly at random and generating an
image conditioned on that class. For a quantitative measure of visual quality, we report FID (27). We
compute FID scores between our synthetic datasets of size 60k and the full test data (either 10k or
19962 images). To measure the utility of generated data, we assess the class prediction accuracy of
classifiers trained with synthetic data on the real test sets. We consider logistic regression, MLP, and
CNN classifiers. Previous work also reports classification accuracies on a large suite of classifiers
from scikit-learn. We omit them, since we focus on images which are best processed via neural
network-based classifiers.

D.3 Classifiers

For logistic regression, we use scikit-learn’s implementation, using the L-BFGS solver and capping
the maximum number of iterations at 5000. The MLP and CNN are implemented in PyTorch. The
MLP has one hidden layer with 100 units and a ReLU activation. The CNN has two hidden layers
with 32 and 64 filters, and uses ReLU activations. We train the CNN with dropout (p = 0.5) between
all intermediate layers. Both the MLP and CNN are trained with Adam under default parameters, and
use 10% of training data as holdout for early stopping. Training stops after no improvement is seen
in holdout accuracy for 10 consecutive epochs.

D.4 Architecture, Hyperparameter, and Implementation

Our DCGAN-based architecture uses 4 transposed convolutional layers with ReLU activations at the
hidden layers and tanh activation at the output layer. A latent dimension of 12 and class embedding
dimension of 4 is used for MNIST and Fashion-MNIST experiments. CelebA experiments use a latent
dimension of 32 and embedding dimension of 4. The latent and class embeddings are concatenated
and then fed to the convolutional stack. The first transposed convolutional layer projects the input to
256× 7× 7, with no padding. Layers 2,3 and 4 have output depth [128, 64, 1], kernel size [4, 4, 3],
stride [2, 2, 1], and padding [1, 1, 1].

Our BigGAN-based architecture uses 4 residual blocks of depth 256, and a latent dimension of 32.
Each residual block consists of three convolutional layers with ReLU activations and spectral normal-
ization between each layer. Please refer to (9) for more implementation details. Our implementation
is based on https://github.com/ajbrock/BigGAN-PyTorch.

In our experiments with the adversarially trained feature extractor, we used a simple feature extractor
with 3 convolutional layers with hidden depth of 64 and output depth of 32. Between each convolu-
tional layer are batchnorm and ReLU layers, followed a 2× 2 maxpool layer. The first two layers
have kernel size 3 and padding 1, while the last layers have kernel size 1 with no padding. For the
generator Gθ and feature extractor φω , the adversarial loss objective can be formally expressed as:

min
θ

max
ω

Ŝc(ω),ε(µ̂(θ), ν̂) = min
θ

max
ω

2〈cφ(Gθ(z), y), P ∗ε (Gθ(z), y)〉

− 〈cφ(Gθ(z), Gθ(z)), P
∗
ε (Gθ(z), Gθ(z))〉

− 〈cφ(y, y), P ∗ε (y, y)〉

Where cφ(a, a) = ||[aimg, αcalabel, αa φ(aimg)
||φ(aimg)||2 ]T − [bimg, αcblabel, αa

φ(bimg)
||φ(bimg)||2 ]T ||22 =

cadv([aimg, alabel], [bimg,blabel])

Hyperparameters of the Sinkhorn loss used were: αc = 15, and entropy regularization ε = 0.05
in MNIST and Fashion-MNIST experiments. ε = 5 is used for CelebA experiments. We use the
implementation publically available at https://www.kernel-operations.io/geomloss/api/
install and all other hyperparameters are kept at their default values. For all experiments, we use
the Adam (40) optimizer with learning rate 10−5, β = (0.9, 0.999), weight decay 2× 10−5.
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For privacy accounting, we use the implementation of the RDP Accountant available in Tensorflow
Privacy.1 All experiments employing the pixel-wise L2 cost use Poisson sampling, and are amenable
to the analysis implemented in compute_rdp. For the experiments with the batch-wise feature
extractor, examples are batched into records at the start of training, and a single record is drawn at
random in each iteration. The privacy amplification for this fixed-size sampling scheme is studied in
(30), and we use the author’s implementation of Theorem 9 for bounding the RDP cost of our queries.

For MNIST and Fashion-MNIST results reported in the main body, we use a noise scale of σ = 1.1
and a batch size of 50 resulting in q = 1/1200, which gives us ∼ 3.4 million training iterations to
reach ε = 10 for δ = 10−5. For the non-private runs, we use a batch size of 500, which improves
image quality and diversity. When training with DP, increasing batch size significantly increases the
privacy cost per iteration, resulting in poor image quality for fixed ε = 10.

For CelebA results reported in the main body, we use a noise scale of σ = 0.8 and a batch size of
200 resulting in q = 0.00123. At δ = 10−6, we train for 1.1 million steps to reach ε = 10.

E Additional Results

DP-CGAN

DP-MERF AE

GS-WGAN

DP-Sinkhorn

Non-priv Sinkhorn

Figure 4: Samples from the methods in Table 1. All private models are (10, 10−5)-DP. The first 3
rows showcasing other methods are from (8).

We evaluate the impact of architecture choice on the performance in the CelebA task by comparing
DP-Sinkhorn+BigGAN with DP-Sinkhorn+DCGAN, under pixel loss. Results are summarized in
Table 3 and visualized in Figure 5. Qualitatively, despite reaching lower FID score, the DCGAN-
based generator’s images have visible artifacts that are not present in models trained with BigGAN-
generators.

Table 3: Differetially private image generation results on downsampled CelebA.

Method DP-ε FID Acc (%)

MLP CNN

Real data ∞ 1.1 91.9 95.0

DCGAN+DP-Sinkhorn 10 156.7 75.0 74.6
BigGAN+DP-Sinkhorn 10 168.4 76.2 75.8

1https://github.com/tensorflow/privacy/
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Figure 5: Additional DP-Sinkhorn generated images under (10, 10−6)differential privacy. Top two
rows use DCGAN based generator, while bottom two rows use BigGAN based generator.
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