New Challenges for Fully Homomorphic Encryption

Ilaria Chillotti Marc Joye Pascal Paillier
Zama, France Zama, France Zama, France
Abstract

Machine learning and privacy are sometimes perceived to be at odds. Privacy
concerns are especially relevant when the involved data are sensitive. This work
deals with the privacy-preserving inference of deep neural networks.

We report on first experiments that were done with a new library developed at
Zama. The library implements a variant of the TFHE fully homomorphic en-
cryption scheme that features an efficient bootstrapping. Our preliminary results
indicate that evaluating deep neural networks is now within the reach of fully ho-
momorphic encryption. They also call for new challenges for fully homomorphic
encryption when applied to the inference of deep neural networks.

1 Privacy-Preserving Machine Learning

Machine learning algorithms are extremely useful in many areas but the type of data that they deal
with is often sensitive. Typical examples include algorithms for the detection of certain genetic
diseases from DNA samples or the ones used for face recognition, email classification, to name a
few. The processed data contain private information about users and could be used in many ways,
from target advertising to blackmail or even threat in some cases. This is why it is essential to
protect the data being used in machine learning applications. Privacy requirements are also pushed
by recent regulations companies dealing with user’s data must comply with, like the GDPR (General
Data Protection Regulation) [11] in Europe or the CCPA (California Consumer Privacy Act) [6] in
the US are two examples.

Cryptographic techniques are methods of choice when it comes to the protection of data. But tradi-
tional encryption algorithms merely protect data while it is in transit or at rest. Indeed, one limitation
and structural property of traditional encryption schemes is that data first needs to be decrypted prior
to being processed. A fundamentally different approach is to rely on fully homomorphic encryption
(FHE). In contrast with traditional encryption schemes where the privacy control lies in the hands
of the recipient of the encrypted data, fully homomorphic encryption schemes allow the recipient to
directly operate on encrypted data.

Furthermore, as the interactivity is minimal in an FHE-based approach, it can be a better fit for
the use-case of Machine Learning as a Service (MLaaS), compared to other privacy preserving
approaches such as multi-party computation. A typical application scenario is shown in Fig. 1.
It involves a user sending data to a service provider (server) running a trained model for a given
task (e.g., medical diagnosis). In this work, the focus is on FHE-based techniques for the privacy-
preserving inference of neural networks.

2 The Road Towards Practical FHE-based Implementations

First posed as a challenge by Rivest et al. in 1978 [19], fully homomorphic encryption—the ability
to evaluate any function over encrypted data—was only solved in 2009 in a breakthrough result by
Gentry [12]. After a decade of intense research, practical solutions have emerged and are being
pushed for standardization [14].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



User (x) Server (0) A server offering MLaaS owns a model 6. A client
needs the prediction y = he(x) of this model for a

xt — Enc(at) a? 5 new input data «. The server evaluates the model over
ot a*, obtains ¢, and returns it to the user. The user de-

— yﬁ + he (a}ﬁ) crypts y* and obtains the prediction y in the clear. Cor-

Y — Dec(yﬁ) rectness follows from the homomorphicity of the en-

cryption algorithm: y* = hg(a*) = hg(Enc(zx)) =
Enc(he(x)) = Enc(y) and so Dec(y*) = y.

Figure 1: MLaaS over encrypted data.

All known instantiations of fully homomorphic encryption schemes produce noisy ciphertexts. Run-
ning homomorphic operations on these ciphertexts in turn increases the noise level in the resulting
ciphertext. At the some point, the noise present in a ciphertext may become too large and the cipher-
text is no longer decryptable. A homomorphic encryption scheme supporting a predetermined noise
threshold is termed leveled (or somewhat homomorphic).

At the core of Gentry’s result resides the technique of bootstrapping. Bootstrapping is a generic
technique that allows refreshing ciphertexts. It therefore enables to turn leveled homomorphic en-
cryption schemes into fully homomorphic encryption schemes, and so to make them evaluate any
possible function over ciphertexts. The key idea behind bootstrapping is to homomorphically eval-
uate the decryption circuit. An encryption of the decryption key (matching the encryption key used
to produce the ciphertext) has to be provided in order to perform the bootstrapping procedure.

The works that followed Gentry’s publication were aimed at proposing new schemes or at improving
the bootstrapping in order to make FHE more efficient in practice. The most famous constructions
are DGHV [8], BGV [5], GSW [13], and their variants. While the constructions that were suc-
cessively proposed made the bootstrapping more practical, it still constituted the bottleneck (each
bootstrapping taking a few minutes). A much faster bootstrapping, based on a GSW-type scheme,
was later devised by Ducas and Micciancio [10], reducing the bootstrapping time to a split sec-
ond. Their technique was further improved and refined, which led to the development of the TFHE
scheme [7].

3 Homomorphic Evaluation of Deep Neural Networks

Our starting point is the state-of-the-art TFHE scheme. TFHE can operate in two modes: leveled
and bootstrapped. The leveled mode supports linear combinations and a predetermined number of
products. The operations evaluated in this mode make the noise always grow. The leveled mode
can be used to evaluate small-depth circuits. As for the bootstrapped mode, it enables a fine control
of the noise by reducing it to a given level whenever it exceeds a certain threshold. For problems
involving circuits of large depth, only the bootstrapped mode is applicable. Deep neural networks
belong to that case.

3.1 Programmable Bootstrapping

In [4], Bourse et al. considered a special type of discretized networks where signals are restricted
to the set {—1,1} and where the activation function is the sign function. They adapted the TFHE
scheme so as to enable the evaluation of the [non-linear] sign function during a bootstrapping step.

Actually, it turns out that the bootstrapped mode of TFHE can be extended to support the evaluation
of any function during the bootstrapping step. More specifically, any function (including non-linear
functions) of an input ciphertext can be obtained as the output of the bootstrapping. Interestingly,
the resulting ciphertext features a controlled level of noise. The process can therefore be iterated
over and over. So, in the case of machine learning applications, the depth of neural networks can be
arbitrarily large.

A discretized variant of the TFHE scheme including the programmable bootstrapping was devel-
oped. So, using this framework, the evaluation of complex functions is achieved thanks to a com-
bination of programmable bootstrapping techniques and leveled operations. The techniques are
efficient and directly operate on words of a chosen size.




3.2 Homomorphic Inference

We review below a number of representative layers that are commonly used to build neural networks.
The list is non-exhaustive. Our techniques are generic and support all known types of layers.

Dense/linear layer and convolution layer A (fully connected) dense layer computes the dot prod-
uct between the inputs and a matrix of weights. A bias vector can be added. An activation function
is then applied component-wise to produce the outputs. When there is no activation function, a
dense layer is also called linear layer. Similarly, a convolution layer convolves the input layer with
a convolution kernel (a.k.a. filter) that is composed of a tensor of weights so as to produce a tensor
of outputs. Biases can be added to the outputs. Moreover, an activation function can be applied to
the outputs.

When evaluated homomorphically, the weights and the biases are provided in the clear. Hence, the
evaluation of these two layers (the activation excepted) consists of a series of multiplications by
constants and additions, which are all leveled operations. The activation functions are treated below.

Activation layer An activation layer is used to inject non-linearity in the neural networks. It is
crucial in the learning. There are many activation functions that can be used in an activation layer.
One of the most popular activation functions is the Rectified Linear Unit (ReLU) function. Other
commonly used activations include the sigmoid function or the hyperbolic tangent function.

As aforementioned, the homomorphic evaluation of an activation function (as any function) can be
performed via a programmable bootstrapping (PBS), with the outputs of the function encoded inside
the test polynomial.

Global average pooling layer A global average pooling layer computes the average of the com-
ponents of its inputs. Specifically, if n denotes the number of components and a; denotes the value
of component ¢, the global average pooling function computes (Z?zl ai) /n.

In a homomorphic evaluation, the global average pooling can be reduced to the computation of the
sum Y ., a;. The division by n is then performed in the next programmable bootstrapping—e.g.,
in a dense layer or a convolution layer—by dividing the weights by the same quantity. Hence, the
sole homomorphic operation required to evaluate a global average pooling layer is the addition of
ciphertexts.

Max-pooling layer A max-pooling layer extracts a fixed-size subset of components from the in-
puts and computes their maximum.

At first sight, as the max function is multivariate (i.e., its takes multiple arguments on input), it
is unclear how it can be evaluated homomorphically. With two arguments, the max function can
however be expressed using the [univariate] ReLU function, max(z,y) = y + ReLU(z — y). In
order to evaluate the max-pooling on more arguments, the basic relation max(z1,...,Tx—1, %) =
max(yg, k) with y, = max(z1,...,z_1) can be used.

3.3 Experimental Results

We conducted a series of numerical experiments to assess the performance against the MNIST
dataset [18]. We report below preliminary results for depth-20, 50, 100 neural networks, respec-
tively noted NN-20, NN-50 and NN-100. These networks all include dense and convolution layers
with activation functions; every hidden layer possesses at least 92 active neurons.

Parameters Using the notation of [7], selected cryptographic parameters are (k,N,o) =
(1,4096,272) for GLWE encryption and (n, o) = (938,2~2%) for LWE encryption. The word-size
is {2 = 64 bits. These two parameter sets meet a 128-bit security level and were validated using the
lwe-estimator (https://bitbucket.org/malb/lwe-estimator/) [1].

Performance analysis Experiments were performed on two different types on machine: a per-
sonal computer with 2.6 GHz 6-Core Intel® Core™ i7 processor, and a 3.00 GHz Intel® Xeon®
Platinum 8275CL processor with 96 vCPUs hosted on AWS. The two machines are referred to as
PC and AWS. The running times are given in the table below. For reference, we also included the


https://bitbucket.org/malb/lwe-estimator/

times for an unencrypted inference. It is important to note that the given times correspond to the
evaluation of a single inference run independently; in particular, the times are not amortized over a
batch of inferences. The AWS implementation takes advantage of the 96 vCPUs; in particular, the
neurons in the hidden layers are processed in parallel.

In the clear Encrypted
PC Accuracy PC AWS Accuracy
NN-20 0.17ms 97.5% 115.52s 17.96s 97.5%
NN-50 0.20ms 95.4% 233.55s 37.69s 95.4%
NN-100 0.33ms 95.2% 481.61s 69.32s 90.5%

Regarding the output accuracy, we observe a drop of nearly 5% for NN-100 compared to the accu-
racy when run over clear data. We note that our results are preliminary. The gap should be narrowed
by spending more time in the parameter tuning. Our next work is to fully automate the parameter
selection. Meanwhile, some manual adjustments and trial-and-error need to be made.

4 Discussion and Perspectives

Earlier works attempted to evaluate neural networks using fully homomorphic encryption. Cryp-
tonets [9] was the first initiative towards this goal. They were able to perform a homomorphic
inference over 5 layers against the MNIST dataset [18]. In order to limit the noise growth, the stan-
dard activation function was replaced with the square function. A number of subsequent works have
adopted a similar approach and improved it in various directions. Among them, it is worth mention-
ing the results of the iDASH competition [15], whose goal is to find privacy-preserving solutions in
the context of genome analysis. The winning solutions of the homomorphic encryption track of the
last two editions (namely, [17, 2] for 2018 and [16] for 2019) have all in common to rely on leveled
homomorphic encryption.

In a recent work, Boura ef al. [3] investigated the applicability of fully homomorphic encryption for
classical deep neural networks. They simulated the effect of noise propagation by adding a noise
value drawn from a normal distribution to intermediate values, while evaluating the model in the
clear. These experiments were carried out with models making use of the standard ReLU activation
function but also with models making use of FHE-friendly variants thereof. Similar experiments
were run by replacing max-pooling layers with FHE-friendly average-pooling layers. As a conclu-
sion of their study, the authors of [3] recommend to favor FHE-friendly operations as they appear to
be usually more resilient to noise perturbations.

While applicable to certain use-cases, leveled solutions are however inherently limited in the type
of tasks they can perform. In particular, in the case of neural networks, they can only accommodate
networks with a moderate number of layers. The techniques and results presented in the previ-
ous section indicate that depth is no longer necessarily an issue and that deep neural networks can
actually be evaluated homomorphically.

In a way similar to iDASH for leveled solutions, we believe it would be useful to have challenges for
bootstrapped solutions. The goal would not be to design new operations nor to modify the topology
in order to make a given neural network more amenable to an FHE-based implementation. On the
contrary, the goal would be to stick to the original neural network model. Doing so presents the
tremendous advantage of not requiring to re-train a new model. As the operations and topology are
unchanged, the already-trained model can be used as is. The efforts to train a neural network should
not be overlooked. This is a costly and time-consuming operation. Furthermore, in many cases,
producing a new model is not even possible as this implies having access to the training dataset,
which may demand the prior approval of the data owners or of some regulatory authorities.

The iDASH competition shined a spotlight on privacy-preserving technologies and their application
to genome analysis. In the same way, we believe that a similar competition with bootstrapped FHE-
based challenges would create a positive emulation among the research teams to seek for always
better and innovative solutions. Our hope is to make in the long run the homomorphic evaluation of
deep neural networks a commodity.



Availability

The library implementing our extended version of TFHE has been developed in Rust. It is available
as an open-source project on GitHub at URL https://github.com/zama-ai/concrete.

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]
[12]

[13]

[14]
[15]
[16]

Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of learning
with errors. Journal of Mathematical Cryptology, 9(3):169-203, 2015. doi:10.1515/
jmc-2015-0016.

Marcelo Blatt, Alexander Gusev, Yuriy Polyakov, and Shafi Goldwasser. Secure large-scale
genome-wide association studies using homomorphic encryption. Cryptology ePrint Archive,
Report 2020/563, 2020. https://ia.cr/2020/563.

Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev. Simulating homo-
morphic evaluation of deep learning predictions. In Cyber Security Cryptography and Machine
Learning (CSCML 2019), volume 11527 of Lecture Notes in Computer Science, pages 212—
230. Springer, 2019. doi:10.1007/978-3-030-20951-3_20.

Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. Fast homomorphic
evaluation of deep discretized neural networks. In Advances in Cryptology — CRYPTO 2018,
Part 111, volume 10993 of Lecture Notes in Computer Science, pages 483—512. Springer, 2018.
doi:10.1007/978-3-319-96878-0_17.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully homomorphic en-
cryption without bootstrapping. ACM Transactions Computation Theory, 6(3):13:1-13:36,
2014. Earlier version in ITCS 2012. doi:10.1145/2633600.

California Consumer Privacy Act (CCPA). https://www.oag.ca.gov/privacy/ccpa.

Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachene. TFHE: Fast fully
homomorphic encryption over the torus. Journal of Cryptology, 33(1):34-91, 2020. Earlier
versions in ASTACRYPT 2016 and 2017. doi:10.1007/s00145-019-09319-x.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully homomor-
phic encryption over the integers. In Advances in Cryptology — EUROCRYPT 2010, vol-
ume 6110 of Lecture Notes in Computer Science, pages 24—43. Springer, 2010. doi:
10.1007/978-3-642-13190-5_2.

Nathan Dowlin, Ran Gilad-Bachrach, Kim Laine, Kristin Lauter, Michael Naehrig, and John
Wernsing. CryptoNets: Applying neural networks to encrypted data with high throughput and
accuracy. In 33rd International Conference on Machine Learning (ICML 2016), volume 48
of Proceedings of Machine Learning Research, pages 201-210. PMLR, 2016. URL: http:
//proceedings.mlr.press/v48/gilad-bachrach16.html.

Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic encryption in
less than a second. In Advances in Cryptology — EUROCRYPT 2015, Part I, volume 9056
of Lecture Notes in Computer Science, pages 617-640. Springer, 2015. doi:10.1007/
978-3-662-46800-5_24.

The EU General Data Protection Regulation (GDPR). https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/7uri=CELEX:32016R0679&from=EN.

Craig Gentry. Computing arbitrary functions of encrypted data. Communications of the ACM,
53(3):97-105, 2010. Earlier version in STOC 2009. doi:10.1145/1666420.1666444.

Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with er-
rors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances in Cryptology
— CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 75-92.
Springer, 2013. doi:10.1007/978-3-642-40041-4_5.

Homomorphic encryption standardization. https://homomorphicencryption.org/.
iDASH secure genome analysis competition. http://www.humangenomeprivacy.org.

Miran Kim, Arif Harmanci, Jean-Philippe Bossuat, Sergiu Carpov, Jung Hee Cheon, Ilaria
Chillotti, Wonhee Cho, David Froelicher, Nicolas Gama, Mariya Georgieva, Seungwan Hong,
Jean-Pierre Hubaux, Duhyeong Kim, Kristin Lauter, Yiping Ma, Lucila Ohno-Machado, Heidi


https://github.com/zama-ai/concrete
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/10.1515/jmc-2015-0016
https://ia.cr/2020/563
https://doi.org/10.1007/978-3-030-20951-3_20
https://doi.org/10.1007/978-3-319-96878-0_17
https://doi.org/10.1145/2633600
https://www.oag.ca.gov/privacy/ccpa
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2
http://proceedings.mlr.press/v48/gilad-bachrach16.html
http://proceedings.mlr.press/v48/gilad-bachrach16.html
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-662-46800-5_24
https://eur-lex.europa. eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa. eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://doi.org/10.1145/1666420.1666444
https://doi.org/10.1007/978-3-642-40041-4_5
https://homomorphicencryption.org/
http://www.humangenomeprivacy.org

Sofia, Yongha Son, Yongsoo Song, Juan Troncoso-Pastoriza, and Xiaoqian Jiang. Ultra-fast
homomorphic encryption models enable secure outsourcing of genotype imputation. bioXxiv,
2020. doi:10.1101/2020.07.02.183459.

[17] Miran Kim, Yongsoo Song, Baiyu Li, and Daniele Micciancio. Semi-parallel logistic re-
gression for GWAS on encrypted data. Cryptology ePrint Archive, Report 2019/294, 2019.
https://ia.cr/2019/294.

[18] Yann LeCun, Corinna Cortez, and Christopher C. J. Burges. The MNIST database of hand-
written digits, 1998. Available at http://yann.lecun.com/exdb/mnist/.

[19] Ronald L. Rivest, Len Adleman, and Michael L. Detouzos. On data banks and privacy homo-
morphisms. In Foundations of Secure Computation, pages 165-179. Academic Press, 1978.
Available at https://people.csail.mit.edu/rivest/pubs.html#RAD78.


https://doi.org/10.1101/2020.07.02.183459
https://ia.cr/2019/294
http://yann.lecun.com/exdb/mnist/
https://people.csail.mit.edu/rivest/pubs.html#RAD78

	Privacy-Preserving Machine Learning
	The Road Towards Practical FHE-based Implementations
	Homomorphic Evaluation of Deep Neural Networks
	Programmable Bootstrapping
	Homomorphic Inference
	Experimental Results

	Discussion and Perspectives

