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Abstract

Privacy attacks on machine learning models aim to extract, or just identify, the1

data that is used to train such models. In light of recent legal requirements, many2

machine learning methods are being upgraded to support unlearning as well. In3

this work, we study the privacy implication of such deletion updates. We consider4

attacks that leverage having access both to the original model and to the model after5

unlearning. In this setting, we show simple and intuitive attacks that are extremely6

effective at violating privacy.7

1 Introduction8

Machine learning has traditionally focused on deriving predictive models from a collection of9

data examples/records S = {e1, . . . , en}. Towards this goal, learning algorithms are designed to10

minimize the risk/error of predicting the correct label y of a new instance x for a newly sampled11

record e = (x, y). However, a trained model h obtained via such methods could potentially reveal12

sensitive information about the examples that were used to train them. For example, a model h13

might reveal the members of its training set, potentially violating the privacy of the individuals who14

contributed those records. Such exposure is of major concern in certain (e.g., medical/political)15

contexts. Furthermore, the ever increasing role of machine learning in decision making and the public16

availability of learning models as a service [38], heightens the importance of such privacy concerns.17

Recent legal requirements (e.g., the European Union’s GDPR [29] or California’s CCPA [12]) aim to18

make such privacy considerations mandatory, but the question of how such privacy concerns can be19

modeled and enforced is the subject of ongoing study [47, 10, 37, 23].20

The work of Shokri et al. [43] demonstrated that natural and even commercialized ML models do, in21

fact, leak a lot about their training sets. In particular, they demonstrated a powerful framework for22

attacking the privacy of ML models through membership inference. In such attacks, the adversary23

with input example e and access to ML model h wants to deduce if the example e was in fact present24

in the data set S that was used to train h or not. This work and many follow-up works [34, 40, 35, 49,25

9, 33, 50, 39, 32] can be seen as demonstrating ways to infer information about data sets (or even26

reconstruct them) based on publicly available statistics about them [13, 17, 2, 18, 41, 28], and are27

also tightly related to works on what an ML model memorizes about its training set [44, 48, 7, 21].28

On the defense side, differential privacy [13, 15, 14] provides a framework to provably limit the29

information that would leak about the training records used in a training process. This is done by30

guaranteeing that an individual’s participation in the data set (versus not doing so) will have little31

statistical impact on the distribution of the produced ML model. Thus, any form of interaction with32

the trained model h (or even a full white-box disclosure of it) will essentially not reveal whether a33

particular record e was a member of the data set or not. While it is a very powerful privacy guarantee,34

differential privacy imposes a challenge on the learning process [45, 19, 3, 11, 42, 46] that usually35

leads to major utility loss when using the same amount of training data [4].36

Privacy challenges in the presence of unlearning. The aforementioned attacks deal with settings37

in which a trained model gets deployed and accessed, and so, the ML model is a static object38

rather than a dynamic one. However, this assumption is not always realistic. Indeed, in light of the39

recent attention given to the right to erasure or the right to be forgotten (as also stressed by legal40
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requirements such as GDPR and CCPA) a new line of work has emerged with the goal of unlearning41

or simply deleting records from a machine learning model [6, 24, 25, 23, 5, 30, 26, 36]. Namely,42

upon a deletion request for a record e ∈ S, one needs to update h to hdel such that hdel is (ideally)43

the same as training a model from scratch using S \ {e}. Now, if an ML model gets updated due to a44

deletion/unlearning request, we are no longer dealing with a static object as the ML model.45

Consider the process of perfectly deleting record e from the data set S that was used to construct a46

model h as described above: obtain hdel by re-training using the smaller data set S \ {e}. Intuitively,47

it seems like this should resolve privacy concerns regarding the record e, at least if the job of the48

adversary is to extract some information about e from the ML model. After all, we are eliminating e49

from the learning process. However, there is a catch! The adversary now can access both models50

h and hdel, and so it can potentially decode additional information about the deleted record e. As a51

simplified demonstrating example, suppose the records e1, . . . , en = S are real-valued vectors, and52

suppose and the ML model, upon a query, returns their summation. Then, if the set S is large with53

sufficient entropy, it might hide, to some extend, its elements. But, upon deleting one of the records54

ei, and updating the model that returns the new sum
∑
j 6=i ej , one can find out ei exactly. In other55

words, the very task of deletion might harm the privacy concerns around the deleted record e.56

Our contribution. To understand the privacy implications of machine unlearning, we revisit privacy57

attacks and study their power and limitations in the new setting where access to both h and hdel is58

provided to the adversary.1 In particular, we study three types of attacks as follows. In each case,59

we propose new attacks that leverage access to the ML models before and after deletion and show60

through experiments that our attacks achieve very high success rates. In each case, we also explore61

and explain the theoretical intuition enabling our attacks.62

• Deletion inference. Can the adversary distinguish between a data record e that was deleted63

from an ML model and one that was not?264

We show that extremely simple attacks can be designed to distinguish deleted records from65

other records by relying on the intuition that the model is more fit to the training data than66

to other data. This attack builds on the implicit intuition of many previous membership67

inference attacks. In fact, one can even reduce the task of deletion inference to four68

sub-tasks of membership inference of the same records e and e′ (the two records to be69

distinguished) with respect to the models before and after the deletion. However, our attacks70

show that one can achieve very high precision beyond what we can achieve by two queries71

to previous membership inference attacks. We present simple attacks both for regression72

and classification against a diverse range of ML models.73

• Deleted data approximation. Can the adversary reconstruct the deleted record e at least74

approximately under a meaningful approximation metric?75

We show that having black-box access to models h and hdel can sometimes allow the76

adversary to get a very good approximation of the record e. The idea is to find local77

differences in the loss space of the two ML models and then track such differences to find78

the (approximate) point that is the cause. We show how to implement this idea for the case79

of nearest-neighbor models.80

• Deleted label approximation. For a deleted record (x, y) = e, can an adversary given x81

learn more information about the label y, than each of the models h, hdel alone provide?82

We show that doing so is possible for linear regression. In particular, we show an attack83

using which one can extrapolate a deleted point’s label to a precision that is more than what84

is provided through the original model h or the model after deletion hdel.85

Conclusion. Our attacks demonstrate that the unlearning operation could come at an extra cost86

in privacy loss. One remedy to prevent such leakage is to use very strong forms of differential87

privacy [16, 31, 8] that handle any form of continual observation. However as mentioned above, even88

basic forms of differential privacy come with a computational cost in training and the amount of data,89

and hence it remains an important direction to directly study the implications of deletion operations90

on data privacy for efficient algorithms as well. Many intriguing questions remain. In particular, it91

would be interesting to study attacks that leverage multiple rounds of deletions, as well as finding92

efficient learning methods that allow deletion with provable privacy guarantees.93

1Yet, one constraint is that h can only be queried before hdel becomes available.
2One can show that distinguishing attacks are equivalent to inference attacks (that is, inferring whether e was

deleted), however we find our attacks to be simpler to explain and analyze in the distinguishing form.
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2 Our Attacks and Experiments94

In this section we describe our three types of attacks on machine unlearning. In each case, we will95

first explain our experiment’s setting, then explain the theoretical intuition behind the attack’s design,96

and finally will report our experimental results. Due to space limitations, we describe the details of97

the data sets that we use and how we synthesize data in the supplemental material.98

2.1 Deletion Inference Attack on Regression99

Attack’s setting and the success criteria. In this attack, the adversary is given two labeled examples100

(x1, y1), (x2, y2) (with real valued labels y1, y2) where one of them is the deleted sample e =101

(xe, ye), the adversary can pick the deleted sample out with high success rate. We used synthesized102

data sets (details in the appendix) and multiple regression models including linear regression, Lasso103

regression, SVM Regressor and Decision Tree Regressor3 in the experiment. We then randomly draw104

one sample (xe, ye) from the training dataset to delete, and draw an additional sample that is either105

inside S (for both models) or outside S (for both models). We repeat this experiment for 1000 runs.106

The success criteria of the experiment is the success rate of the attack.107

Our attack and the intuition behind it. We propose two attacks, DelInfLbl which uses both data x108

and label y, and DelInf which only uses x. DelInfLbl compares the change of loss function used in109

training (MSE for example), namely, `(h′(x1), y1)− `(h(x1), y1) and `(h′(x2), y2)− `(h(x2), y2).110

The attack marks the record with larger positive change on the loss to be the deleted sample.111

Intuitively, the deleted sample’s loss will increase after deletion, while another training sample’s112

loss will decrease by average (assume Learn follows the ERM principle). DelInf directly compares113

the distances of outputs between two models, namely, |h(x1)− h′(x1)| and |h(x2)− h′(x2)|. The114

adversary marks the record with larger distance as the deleted sample. Intuitively, the deleted115

sample’s distance will be larger in comparison to a sample which either remains in the data set S or116

remains out of the data set S.117

DelInf DelInfLbl
Learner method Inside S Outside S Inside S Outside S
Linear Regression 99.30% 98.70% 99.60% 99.40%
Lasso Regression 93.90% 92.80% 99.80% 99.90%
Decision Tree 100.00% 82.40% 100.00% 92.20%
Support Vector Machine 89.70% 89.40% 91.20% 91.30%

Table 1: Summary of success rate of the attacks DelInf and DelInfLbl on Regression Learners

2.2 Deletion Inference Attack on Classification Models118

Attack’s setting and the success criteria. Similarly to the regression setting, in this attack the119

adversary is given two examples and wants to infer which one is the deleted one, but the difference120

is that we are dealing with discrete labels (e.g., in {0, 1}). We use synthesized datasets (details in121

the appendix) and multiple classification models including logistic regression, SVM Classifier and122

Decision Tree Classifier. We then randomly draw one sample (xe, ye) from the training dataset to123

delete, and draw an additional sample. Similarly, we consider two scenarios, the additional sample124

being inside S and outside S . The success criteria of the experiment is the success rate of both attacks125

DelInf and DelInfLbl.126

DelInf DelInfLbl
Learning method Inside S Outside S Inside S Outside S
Logistic Regression 99.60% 99.50% 99.90% 99.60%
Random Forest 100.00% 99.50% 100.00% 99.90%
Support Vector Machine 89.50% 89.60% 91.00% 92.90%

Table 2: Summary of success rate of the attacks DelInf and DelInfLbl on Classification Learners

Our attack and the intuition behind it. We apply the same attacks DelInf and DelInfLbl in a similar127

style to regression models. Comparing to regression where the labels are numbers, in classification we128

use the predicted posterior probability over the labels as the output. Similar to regression, intuitively129

3Implementation of the methods are from the python library Scikit-learn.
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the deleted sample e’s posterior will likely to change more after the deletion. The loss will also be130

larger for the deleted sample e. For the choice of loss function in DelInfLbl, we use Hinge Loss.131

2.3 Deleted Label Approximation Attack on Linear Regression132

Attack’s setting and the success criteria. In this experiment, the adversary is given a features133

vector of the deleted record xe and wishes to approximate the true label of the deleted sample ye134

by querying the models before and after the deletion. The goal is to beat the correctness of both135

models. We perform the attack on the linear regression model. We test the attack on two traditional136

regression datasets, the Boston Housing Price Dataset [27] and the diabetes dataset [20]. The details137

of the datasets can be found in the appendix. For each dataset, we train the model h with the whole138

dataset. We then randomly pick a sample e and perform the re-training on the data set without e. The139

adversary returns an approximation ỹe and the success criteria is the distance between ỹe and ye.140

Our attack and the intuition behind it. We propose an attack that we call LabelApp: it utilizes141

ŷe = h(xe) and ŷ′e = h′(xe). The attacker then returns ỹe = ŷe + λ · (ŷe − ŷ′e) as a close142

approximation to ye where λ is a carefully chosen constant parameter of the attack. Intuitively,143

we have ŷ′e ≥ ŷe. Therefore, moving further from ŷ′e towards ŷe for a positive λ is going to have144

less loss, which is closer to the actual ye. The best value of λ in each different scenario could be145

empirically estimated by a similar size data set that is individually sampled by the attacker.146

Experiments’ results. We calculate the average distance of ỹi and yi with different λ. The results147

are shown in Table 3. Our results show that there exists a λ value for each data set that can greatly148

increase the approximation by reducing the the estimated loss by around 70%, which leads to a much149

smaller error than both ŷ and ŷ′. In case the two models were supposed to hide the label (perhaps if it150

was a sensitive information to know very precisely) the data removal process, in this case, clearly151

goes against the goal of hiding y in its exact form.152

Best λ E[(yi − ŷi)2] E[(yi − ŷ′i)
2] E[(yi − ỹi)2] Gain(%)

Boston Housing 17.5 21.897 23.728 7.149 14.75(70%)
Diabetes 30 2859.7 3001.7 829.8 2029.8(72%)

Table 3: Result of the Data Label Extraction Attack on LR

2.4 Deleted Data Approximation Attack on K-NN model153

Attack’s setting and the success criteria. In this experiment, the goal of the adversary is to154

approximate the whole vector of the deleted sample xe as a point in high dimension. We perform155

our experimental attack on the K-Nearest-Neighbors (K-NN), also one of the most basic machine156

learning approaches. K-NN model predicts the label of a sample by taking average of the labels of K157

nearest neighbors of that sample. We test the attack on two traditional classification datasets, the Iris158

Dataset [22] and the Wine Recognition dataset [1]. For each dataset, we train the model h following159

the whole dataset with K = 3. We then randomly pick a sample e and perform the re-training on the160

data set without e. The adversary returns an x̃e with queries to both models and the success criteria161

is the distance between x̃e and xe.162

Our attack and the intuition behind it. We define an attack DataApp in this scenario that first163

randomly draws samples from the data distribution, and query the two models in the corresponding164

order. The adversary then returns the average of all samples whose output label is different. Intuitively,165

for a well generalized model, the impact of one sample’s deletion to the model is mostly local rather166

than global. In this case, the average of these samples that have different outputs gives a much closer167

estimation of xe comparing to a random approximation.168

In the experiment, we run DataApp with 10000 random samples draw uniformly from the data range.169

We denote the attack to be failed when no sample has its label changed in this phase, otherwise we170

compare the distance of predicted x̃e to the average of samples whose output label changed.171

Failed rate Estimated point to e Avg Sample Distance
Iris 34% 0.32 0.64
Wine 6.7% 0.75 0.99

Table 4: Result of Data Feature Extraction Attack in K-NN model
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A Supplemental Material: Details of Data Used308

A.1 Synthesized Datasets309

For the deletion inference attack on regression ,we assume the input xi is drawn from a 10 dimensional310

Gaussian distribution N(0, I) where 0 = (0, . . . , 0),1 = (1, . . . , 1), and I is the identity matrix, and311

output yi = 〈w,xi〉+ εi follows a linear function with fixed w and an independent additive Gaussian312

noise from N(0, 0.1 · I) represented by ε. We draw 1000 random samples from the data distribution313

to create a training dataset.314

For the deletion inference attack on classification, we assume the input xi is drawn from a mixture315

Gaussian distribution that includes two independent 10 dimensional Gaussian distribution N(0, I)316

and N(0.1 · 1, I) where 0 = (0, . . . , 0),1 = (1, . . . , 1), and I is the identity matrix. Example’s label317

is determined by its distribution, that is, y = 0 for the 1st Gaussian distribution and y = 1 for the 2nd318

Gaussian distribution. In this experiment we draw 500 random samples for each Gaussian distribution319

to create a training dataset.320

A.2 Real Datasets321

Table 5 and 6 are the details of the real datasets we used in the experiments.322

No. of Samples No. of Features Predict
Boston Housing 506 14 The median house price
Diabetes 442 10 Predict Disease progression

Table 5: Regression Dataset Descriptions

No. of Samples No. of Features No. of Labels Predict
Iris [22] 150 4 3 The type of Iris plants
Wine [1] 178 13 3 Wine cultivator

Table 6: Classification Dataset Descriptions
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