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Abstract

Reinforcement learning algorithms are widely
used in domains where it is desirable to pro-
vide a personalized service. In these domains
it is common that user data contains sensi-
tive information that needs to be protected
from third parties. Motivated by this, we
study privacy in the context of finite-horizon
Markov Decision Processes (MDPs) by requir-
ing information to be obfuscated on the user
side. We formulate this notion of privacy for
RL by leveraging the local differential privacy
(LDP) framework. We present an optimistic
algorithm that simultaneously satisfies LDP
requirements, and achieves sublinear regret.
We also establish a lower bound for regret min-
imization in finite-horizon MDPs with LDP
guarantees. These results show that while
LDP is appealing in practical applications,
the setting is inherently more complex. In
particular, our results demonstrate that the
cost of privacy is multiplicative when com-
pared to non-private settings.

1 Introduction

Reinforcement learning (RL) is a fundamental sequen-
tial decision-making problem for learning in uncertain
environments. In each round, the learner observes the
state of the environment, and then selects an action.
This action will provide them with a reward and take
them to a new state via some unknown dynamics. The
learner receives feedback in the form of trajectories
(i.e., sequences of states, actions and rewards) which
encode information about the unknown dynamics and
objectives, and allow the agent to learn about the en-
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vironment. The agent’s aim is to select actions to
maximize their total reward. To succeed in this prob-
lem, an agent needs to trade-off exploration to gather
information about the environment (reward and dy-
namics) and exploitation of available information to
maximize the cumulative reward. In this paper, we con-
sider finite-horizon RL problems (Puterman, 1994, Chp.
4) with S states and A actions, where the agent inter-
acts with the environment in a sequence of K episodes
of length H (T = KH). The agent’s performance is
measured by the regret, the difference between the
expected total cost of the optimal policy and agent’s
policy. Many algorithms have been developed for regret
minimization in this setting (e.g., Jaksch et al., 2010;
Azar et al., 2017).

Reinforcement learning algorithms have become ubiqui-
tous in many settings such as digital marketing, health-
care and finance, where it is desirable to provide a
personalized service. Nowadays most users understand
that it is necessary to provide a certain amount of per-
sonal information to receive a service tailored to their
specific needs. At the same time, there is increasing
concern about protecting users’ privacy and personal
data. In particular, in many of the aforementioned
domains, the data obtained by the RL algorithm are
highly sensitive. For example, in healthcare, the state
encodes personal information such as gender, age, vital
signs etc. We assume that the user wants to prevent
this information from being discovered by external
parties or malicious agents. Unfortunately, Pan et al.
(2019) have shown that, unless sufficient precautions
are taken, the RL agent may leak information about
the environment, putting user privacy at jeopardy.

Differential privacy (DP) (Dwork et al., 2006) is a stan-
dard mechanism for preserving data privacy, widely
studied for supervised learning. Differential privacy
has also been studied in a simpler version of the RL
problem known as multi-armed bandits (e.g., Mishra
and Thakurta, 2015; Tossou and Dimitrakakis, 2016).
However, Shariff and Sheffet (2018) showed that the
standard definition of DP is incompatible with regret
minimization in the contextual bandit problem. Weaker
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or different notions of privacy have thus been con-
sidered (e.g., Shariff and Sheffet, 2018; Boursier and
Perchet, 2020). Recently, Vietri et al. (2020) transferred
some of these techniques to RL presenting the first pri-
vate algorithm for regret minimization in finite-horizon
problems. They considered a relaxed definition of DP
called joint differential privacy (JDP) and proposed an
ε-JDP algorithm based on randomized response which
achieves a regret of Õ(

√
H4SAT + SAH3(S +H)/ε).

This shows that the cost of JDP privacy is an additive
term of Õ(SAH3(S +H)/ε). In the JDP setting, the
privacy burden lies with the learning algorithm which
directly observes user trajectories containing sensitive
data. In particular, this means that the data itself is not
private and could potentially be used by the owner of
the application to train other algorithms which do not
necessarily guarantee privacy. An alternative definition
of privacy is Local Differential Privacy (LDP) (Duchi
et al., 2013). This requires that the user’s data is pro-
tected at collection time before the learning agent has
access to it. Intuitively, LDP ensures that each col-
lected trajectory is DP when observed by the learning
agent while DP requires computation on the entire set
of trajectories to be DP. LDP is in general a stronger
definition of privacy1. It is also simpler to understand
and more user friendly. These characteristics make
LDP more suited for real-world applications.

In this paper, we study LDP for regret minimiza-
tion in finite horizon reinforcement learning. We first
provide a lower bound of Ω̃

(√
HSAT/min{exp(ε) −

1, 1}
)
. This shows that LDP is inherently harder than

JPD in RL, where the lower-bound is Ω̃
(√
HSAT +

SAH log(T )/ε
)

(Vietri et al., 2020). Then, we pro-
pose the first LDP algorithm for regret minimization
in tabular finite-horizon problems. Inspired by (Ren
et al., 2020), we use a privacy-preserving mechanism
(e.g. Laplace mechanism, see Dwork et al. (2006)) to
perturb the information associated to each trajectory
and derive LDP-OBI, an ε-LDP algorithm with a
sublinear regret bound. This algorithm is compatible
with several different privacy-preserving mechanisms.
The main challenge in this setting is to find a level of
noise in the mechanism that guarantees privacy but
also allows the algorithm to learn about the environ-
ment. For the Laplace mechanism, we show a regret
bound of Õ

(
max

{
H3/2S2A

√
T/ε,HS

√
AT
})

. This

matches the lower bound up to a H2S3/2
√
A factor

when ε → 0. We also perform preliminary numerical
simulations to evaluate the impact of LDP on the learn-
ing process. For comparison, we derive LDP-PSRL, a

1LDP and JDP are not directly comparable in contextual
bandits and RL. As discussed in (Zheng et al., 2020), LDP
seems a more appropriate privacy definition for contextual
bandit and we believe this is the case in RL too.

locally private version of posterior sampling (Osband
et al., 2013).

1.1 Related Work

The notion of DP was introduced in (Dwork et al.,
2006) and is now a standard in machine learning (e.g.,
Abowd, 2018; Erlingsson et al., 2014; Dwork and Roth,
2014). In stochastic multi-armed bandits, ε-DP algo-
rithms have been extensively studied (see e.g., Mishra
and Thakurta, 2015; Tossou and Dimitrakakis, 2016).
Recently, Sajed and Sheffet (2019) proposed an ε-DP al-
gorithm for stochastic MABs that achieves the private
lower-bound presented in (Shariff and Sheffet, 2018).
In contextual bandits, Shariff and Sheffet (2018) de-
rived an impossibility result for learning under DP by
showing a regret lower-bound Ω(T ) for any (ε, δ)-DP al-
gorithm. As a consequence, they considered the relaxed
JDP setting and proposed an optimistic algorithm with
sublinear regret and ε-JDP guarantees. Recently, local
differential privacy (Duchi et al., 2013) has attracted
increasing interest in the bandit literature. Gajane
et al. (2018) were the first to study LDP in stochastic
MABs. They proposed an optimistic and Bayesian
algorithm with sublinear regret. Chen et al. (2020) ex-
tended LDP to combinatorial bandits, and Zheng et al.
(2020) focused on LDP for MAB and contextual ban-
dit. Private algorithms for regret minimization have
also been investigated in multi-agent bandits (a.k.a.
federated learning) both in centralized and decentral-
ized settings (see e.g., Tossou and Dimitrakakis, 2015;
Dubey and Pentland, 2020b,a). Empirically, private ap-
proaches in centralized bandits have been investigated
in (Malekzadeh et al., 2020; Hannun et al., 2019).

In RL, Balle et al. (2016) proposed the first private
algorithm for policy evaluation with linear function
approximation. Wang and Hegde (2019) considered
the RL problem in continuous space, where reward
information is protected. They designed a private ver-
sion of Q-learning with function approximation where
privacy is achieved by injecting noise in the value func-
tion. In both cases, those works considered a standard
definition of ε-DP, but did not focus on regret mini-
mization. The first paper ensures privacy with respect
to the change of trajectories collected off-policy and
the second paper ensures privacy with respect to dif-
ferent reward functions. Ono and Takahashi (2020)
recently studied LDP for actor-critic methods in the
context of distributed RL. Regret minimization with
privacy guarantees has only been considered in RL
recently. Vietri et al. (2020) designed a private op-
timistic algorithm for regret minimization with JDP
guarantees. They proposed a variation of UBEV (Dann
et al., 2017) using a binary mechanism with parameter
ε/H. Their algorithm PUCB achieves a regret bound
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Õ(
√
H4SAT +SAH3(S+H)/ε) while enjoying ε-JDP

guarantees. Compared to the worst case regret of
UBEV, the penalty for JDP privacy is only additive as
shown by their lower-bound of Ω̃

(√
HSAT+SAH/ε

)
.

2 Preliminaries

In this section, we recall the basics of finite-horizon
Markov Decision Processes (MDPs) and introduce the
definition of local differential privacy for MDPs.

2.1 Finite-Horizon MDPs

We consider a finite-horizon Markov Decision Process
(MDP) (Puterman, 1994, Chp. 4) M = (S,A, p, r,H)
with state space S, action space A and horizon H ∈ N.
Every state-action pair is characterized by a reward
distribution with mean r(s, a) supported in [0, 1] and
a transition distribution p(·|s, a) over next state.2 We
denote by S = |S| and A = |A| the number of
states and actions. We define a non-stationary pol-
icy as a collection π = (π1, . . . , πH) of Markovian
and deterministic policies πt : S → A. For any
t ∈ [H] := {1, . . . ,H} and state s ∈ S, the value func-
tion of a non-stationary policy π is defined as V πt (s) =

E
[∑H

l=t rl(sl, al) | st = s, at = πt(st)
]
. There exists

an optimal Markovian and deterministic policy π? (Put-
erman, 1994, Sec. 4.4) for which V ?t (s) = V π

?

t (s) =
maxπ∈ΠMD V πt (s) with ΠMD the space of determinis-
tic Markovian policies. Both V π and V ? satisfy the
Bellman equations:

V πt (s) = r(s, πt(s)) + p(·|s, πt(s))TV πt+1 := Lπt V
π
t+1(s)

V ?t (s) = max
a∈A

{
r(s, a) + p(·|s, a)TV ?t+1

}
:= L?tV

?
t+1

where V ?H+1(s) = 0 for any state s ∈ S. Note that by
boundness of the reward, all value functions V πt are
bounded in [0, H − t+ 1] for any t and s.

The learning problem. The learning agent inter-
acts with the MDP in a sequence of episodes k ∈ [K]
of fixed length H by playing a non-stationary policy
πk = (π1,k, . . . , πH,k). In each episode, the initial state
s1,k is randomly selected by some user uk. We assume
that the learning agent knows S, A and the support
of the reward distribution, while the reward and dy-
namics are unknown and need to be estimated online.
We evaluate the performance of a learning algorithm A
which plays policies π1, . . . , πK by its cumulative regret

2We can simply modify the algorithm to handle step
dependent transitions and rewards. The regret is then
multiplied by a factor H

√
H.

after K episodes

R(A,K) =

K∑

k=1

(V ?1 (sk,1)− V πk
1 (sk,1)). (1)

2.2 Local Differential Privacy

When modeling a decision problem as a finite horizon
MDP, it is natural to view each episode k ∈ [K] as a
trajectory associated to a specific user. In this paper,
we assume that the sensitive information is contained
in the states and rewards of the trajectory, and we
wish to take actions that keep these quantities private.
This is reasonable in many settings such as healthcare,
where the trajectory of each episode corresponds to the
evolution of the health status (state) of a patient in
response to the actions decided by the doctor, and the
reward is some measure of the patient’s health. We
want to make sure that no sensitive health data is leaked
by the executed actions. This poses a fundamental
challenge since in many cases, the information about
the actions taken in each state is essential for learning
and creating a personalized experience for the user.
The goal of a private RL algorithm is thus to ensure
that the sensitive information remains private, while
preserving the learnability of the problem.

Privacy in RL has been tackled in (Vietri et al., 2020)
through the lens of joint differential privacy (JDP).
Intuitively, JDP requires that when changing an user,
the information seen by the other K − 1 users will not
change too much (Vietri et al., 2020). The privacy
burden lies within the RL algorithm. The algorithm
has access to all the information about the user (i.e.,
trajectories) containing sensitive data. The algorithm
has to provide guarantees about the security of the data
and carefully select the policies to execute in order to
guarantee JDP. This approach to privacy requires the
user to trust the RL algorithm to securely handle the
data and not to expose or share sensitive information.

In contrast to prior work, in this paper, we consider
local differential privacy (LDP) in RL. This removes
the requirement that the RL algorithm observes the
true sensitive data. At high level, LDP considers that
the user interacts locally with the environment and
only the outcome of this interaction –i.e., trajectory–
could be observed by a third party or a malicious
agent. This is different than JDP or DP where the
sequences of actions from all the users can be observed
and thus should be privatized. Thus, LDP requires
that an algorithm has access to user information only
through samples that have been secured before being
stored. Information is secured locally by the user using
a private randomizer M, before being sent to the RL
agent. The appeal of this local model is that all privacy
computations are done locally on the user-side. Because
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Algorithm 1: Locally Private Episodic RL

Input: Agent: A, Local Randomizer: M, Users:
u1, · · · , uK

1 for k = 1, . . . ,K do
2 Agent A computes policy πk using

{M(Xuk ) | h ∈ [K − 1]}
3 User uk receives policy πk from agent A and

observes s1,k ∼ ρ0,uk

4 User uk executes policy πk and observes a
trajectory Xuk = {(sh,k, ah,k, rh,k) | h ∈ [H]}

5 User uk sends privatized information M(Xuk ) to
agent A

nobody other than the owner has ever access to any
piece of non private data, this local setting is far more
secure. In particular, it does not require a trusted party,
and there is no central agent who might be subject to
an intrusion.

We now formally define local differential privacy in
finite horizon reinforcement learning. Following the
definition in (Vietri et al., 2020), we say a user u
is characterized by a starting state distribution ρ0,u

(i.e., for user u, s1 ∼ ρ0,u) and a tree of depth H,
which describes the state and rewards correspond-
ing to all possible sequences of actions. Alg. 1 de-
scribes the LDP private interaction protocol between
K unique users {u1, . . . , uK} ⊂ UK ,with U the set of
all users, and an RL algorithm A. For any k ∈ [K],
let s1,k ∼ ρ0,uk

be the initial state for user uk and
denote by Xuk

= {(sk,h, ak,h, rk,h) | h ∈ [H]} ∈ Xuk

the trajectory observed by user uk. We write M(Xuk
)

to denote the privatized data generated by the ran-
domizer for user uk. The goal of mechanism M is to
secure sensitive information while encoding sufficient
information for learning. With these notions in mind,
we state the formal definition of LDP for RL.

Definition 1. For any ε ≥ 0 and δ ≥ 0, a privacy
preserving mechanism M is said to be (ε, δ)-Locally
Differential Private (LDP) if and only if for all users
u, u′ ∈ U and trajectories (Xu, Xu′) ∈ Xu ×Xu′ :

P (M(Xu) ∈ S) ≤ eε P (M(Xu′) ∈ S) + δ (2)

where Xu is the space of trajectories associated to user
u.

Note that Definition 1 is coherent with the definition
given in the contextual bandits (see Zheng et al., 2020;
Chen et al., 2020), where a user is simply identified by
its context.

3 Optimism with Local Privacy

Our primary goal in this work is to provide an algorithm
for finite-horizon MDPs which has bounded regret and

satisfies local differential privacy. In order to do this,
we combine “optimism” (e.g., Jaksch et al., 2010; Azar
et al., 2017; Zanette and Brunskill, 2019) with a pri-
vacy mechanism. A key challenge here is to ensure
that the privacy mechanism does not prevent the RL
algorithm from learning. In this work, we build on sev-
eral well-known privacy mechanisms like the Laplace
mechanism or the Gaussian mechanism (e.g., Dwork
and Roth, 2014) to generate private counters that allow
us to construct “reasonable” estimates of the unknown
rewards and transitions. These private estimates are
then used to define confidence intervals from which
optimistic policies for exploration can be derived. We
call the resulting algorithm LDP-OBI. In the follow-
ing, we provide further details of LDP-OBI, and prove
that is an LDP algorithm for regret minimization in
finite-horizon MDPs.

3.1 Privacy-Preserving Mechanism

At the end of each episode k ∈ [K], the user uk uses
a private randomizer M to generate a private statis-
tic M(Xuk

) that is sent to the RL algorithm A. This
statistic should encode sufficient information for the RL
algorithm to improve the policy while maintaining the
user’s privacy. For a given trajectory X, let RX(s, a) =∑H
h=1 rh1{sh=s,ah=a}, Nr

X(s, a) =
∑H
h=1 1{sh=s,ah=a}

and Np
X(s, a, s′) =

∑H−1
h=1 1{sh=s,ah=a,sh+1=s′} be the

true non-private statistics (which the agent will never
observe). We design the mechanism M so that for
a given trajectory X = {(sh, ah, rh) | h ≤ H} ∈
(S×A×R)H ,M returns private versions of these statis-

tics. That is, the output M(X) = (R̃X , Ñ
r
X , Ñ

p
X) ∈

RS×A × RS×A × RS×A×S is a perturbed aggregate
statistic. Here, R̃X(s, a) is a noisy version of the cumu-

lative reward RX(s, a) in trajectory X, Ñr
X and Ñp

X

are perturbed counters of visits to state-action and
state-action-next state tuples, respectively. At the be-
ginning of episode k, the algorithm has access to the
aggregated private statistics:

R̃k(s, a) =
∑

l<k

R̃Xul
(s, a),

Ñr
k (s, a) =

∑

l<k

Ñr
Xul

(s, a)

and Ñp
k (s, a, s′) =

∑

l<k

Ñp
Xul

(s, a, s′)

(3)

We denote the non-private counterparts of these ag-
gregated statistics as Rk(s, a) =

∑
l<k RXul

(s, a),

Nr
k (s, a) =

∑
l<kN

r
Xul

(s, a) and Np
k (s, a, s′) =∑

l<kN
p
Xul

(s, a, s′) (these are also unknown to the RL

agent).

Using these private statistics, we can define conditions
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that a private randomizer must satisfy in order for the
RL agent to be able to learn the reward and dynamics of
the MDP. In particular, we require that the randomizer
must return private statistics that enable a “reasonable”
estimate of the MDP to be constructed. The exact
definition we require is given below:

Definition 2 (Private Randomizer for RL). The pri-
vate randomizer M should satisfy (ε0, δ0)-LDP, Def. 1,
with ε0, δ0 ≥ 0. Moreover, for any δ > 0 and
k ≥ 0, there must exist four finite strictly positive func-
tion, ck,1(ε0, δ0, δ), ck,2(ε0, δ0, δ), ck,3(ε0, δ0, δ) ∈ R?+
and ck,4(ε0, δ0, δ) ∈ R?+ such that with probabilty at
least 1− δ for all (s, a, s′) ∈ S ×A× S:
∣∣∣R̃k(s, a)−Rk(s, a)

∣∣∣ ≤ ck,1(ε0, δ0, δ) (4)
∣∣∣Ñr

k (s, a)−Nr
k (s, a)

∣∣∣ ≤ ck,2(ε0, δ0, δ) (5)
∣∣∣∣∣
∑

s′

Np
k (s, a, s′)−

∑

s‘

Ñp
k (s, a, s′)

∣∣∣∣∣ ≤ ck,3(ε0, δ0, δ)

(6)∣∣∣Np
k (s, a, s′)− Ñp

k (s, a, s′)
∣∣∣ ≤ ck,4(ε0, δ0, δ) (7)

The functions ck,1(ε0, δ0, δ), ck,2(ε0, δ0, δ), ck,3(ε0, δ0, δ)
and ck,4(ε0, δ0, δ) must be increasing functions of k and
decreasing functions of δ. We also write ck,1(ε0, δ),
ck,2(ε0, δ), ck,3(ε0, δ) and ck,4(ε0, δ) when δ0 = 0.

The problem of constructing counters which satisfy
conditions of Def. 2 has been studied extensively in the
differential privacy literature (Dwork et al., 2006; Geng
et al., 2020).

In Dwork et al. (2010), it was shown for DP that
supervised learning in databases of size T , there exists a
private randomizer such that the difference between the
private and non-private counters is of order O(ln(T )/ε).
For local differential privacy, this difference is of order
O(
√
T/ε) using the Laplace mechanism for databases

of size T (see Dwork and Roth, 2014, Sec. 12.3). In
the non-private case the regret scales with O(

√
T ) .

The effect of privacy on estimating a model of the
environment is of order O(

√
T/ε), so we expect the

regret to be of order O(
√
T (1 + 1/ε)).

3.2 LDP-OBI

In this section, we introduce LDP-OBI, an LDP al-
gorithm for exploration. As commonly done in the
literature, LDP-OBI is based on the optimism-in-the-
face-of-uncertainty principle. When developing opti-
mistic algorithms is it necessary to define confidence
intervals using the estimated model that are broad
enough to capture the true model with high probabil-
ity, but narrow enough to ensure low regret. This is
made more complicated in the LDP setting, since the

estimated model is defined using randomized counters.
In particular, this means we cannot use standard con-
centration inequalities such as those used in (Azar et al.,
2017; Zanette and Brunskill, 2019). Moreover, when
working with randomized counters, classical estimators
like the empirical mean can even be ill-defined as the
number of visits to a state-action pair, for example,
can be negative.

Nevertheless, we show that by exploiting the properties
of the mechanismM in Def. 2, it is still possible to de-
fine an empirical model which can be shown to be close
to the true model with high probability. To construct
this empirical estimator, we rely on the fact that for
each state-action pair (s, a), Ñr

k (s, a) + ck,2(ε0, δ0, δ) ≥
Nr
k (s, a) ≥ 0 with high probability where the precision

ck,2(ε0, δ0, δ) ensures the positivity of the noisy num-
ber of visits to a state action-pair. A similar argument
holds for the transitions. Formally, we define the esti-
mated (private) rewards and transitions before episode
k as follows:

r̃k(s, a) =
R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

,

p̃k(s′ | s, a) =
Ñp
k (s, a, s′)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(8)

By leveraging properties of Def. 2 and standard concen-
trations, we can show the following result. The proof
is provided in App. A.

Proposition 1. For any ε0 > 0, δ0 ≥ 0, δ > 0, α > 1
and episode k, using mechanism M, we have that with
probability at least 1− 2δ, for any (s, a) ∈ S ×A

|r(s, a)− r̃k(s, a)| ≤

√√√√ 2 ln
(

4π2SAHk3

3δ

)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
(α+ 1)ck,2(ε0, δ0, δ) + ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

:= βrk(s, a)

(9)

||p(· | s, a)− p̃k(· | s, a)||1 ≤

√√√√ 14S ln
(

4π2SAHk3

3δ

)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
Sck,4(ε0, δ0, δ) + (α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

:= βpk(s, a)

(10)

The shape of the bonuses in Prop. 1 highlights two
terms. The first term is reminiscent of Hoeffding
bonuses in optimistic RL algorithms as it scales as

O
(

1/
√
Ñp
k

)
. The remaining term is of orderO

(
1/Ñp

k

)

and accounts for the variance (and potentially bias) of
the noise added by the privacy-preserving mechanism.

As commonly done in the literature (e.g., Azar et al.,
2017; Qian et al., 2019; Neu and Pike-Burke, 2020),
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we use these concentration results to define a bonus
function

bh,k(s, a) := (H − h+ 1) · βpk(s, a) + βrk(s, a). (11)

At each episode k, LDP-OBI builds an estimated
MDP Mk = (S,A, p̃k, r̃k + bk, H) and computes the
optimal value function Vk (and associated policy) using
truncated backward induction (e.g., Azar et al., 2017):

Qh,k(s, a) = r̃k(s, a) + bh,k(s, a) + p̃k(·|s, a)TVh+1,k

πh,k(s) = arg max
a

Qh,k(s, a) (12)

where Vh,k(s) = min{H − h+ 1,maxaQh,k(s, a)} and
VH+1,k(s) = 0. It can be shown that Vk,h(s) ≥ V ?h (s)
and thus the greedy policy w.r.t. Vk, πk = (πh,k)h, is
optimistic.

4 Regret Guarantees

We start this section by presenting a lower bound on
the regret of any algorithm in the LDP setting. We
then state the regret of LDP-OBI algorithm associated
to any private mechanism satisfying Def. 2.

4.1 Lower Bound

To provide a lower bound for LDP setting, we build
a hard instance of finite-horizon MDP leveraging the
idea in (Auer et al., 2002; Lattimore and Szepesvári,
2020). To handle privacy, we rely on the fact that
local differential privacy acts as Lipschitz function,
with respect to the KL-divergence, in the space of
probability distribution (see Duchi et al., 2013, Thm.
1). The proof of Thm. 1 is provided in App. B.

Theorem 1. For any algorithm A associated to a ε-
LDP mechanism, any number of states S ≥ 3 and
actions A ≥ 2 and H ≥ 2 logA(S − 2) + 2 there exists
an MDP M with S states and A actions such that:

EM (R(A,K)) ≥ Ω

(
H
√
SAK

min {exp(ε)− 1, 1}

)
(13)

The recent work of Vietri et al. (2020) states that for
joint differential privacy the regret in finite-horizon

MDPs is lower-bounded by Ω
(
H
√
SAK + 1

ε

)
. Thm. 1

shows that the local differential privacy setting is in-
herently harder than the joint differential privacy one
for small ε as our lower-bound scales with

√
K/ε when

ε u 0. Both bounds scale with
√
K when ε→ +∞.

4.2 Regret Upper Bound

We now show a high probability upper bound on the re-
gret of LDP-OBI associated with any LDP mechanism
M satisfying Def. 2.

Algorithm 2: LDP-OBI (M)

1 om Input: number of episodes K, horizon H, failure
probability δ ∈ (0, 1), bias α > 1, private
randomizer M with parameters (ε0, δ0)

2 Set H0 = ∅
3 for k = 1, . . . ,K do
4 Compute p̃k and r̃k as in Eq. 8 using Hk−1

5 Compute βrk and βpk as in Eq. 9-10 using
ck,1(ε0, δ0, δ

′), ck,2(ε0, δ0, δ
′), ck,3(ε0, δ0, δ

′) and
ck,4(ε0, δ0, δ

′) with δ′ = 3δ
2k2π2

6 Compute exploration bonus bh,k as in Eq. 11
7 Compute πk as in Eq. 12
8 Send policy πk to user uk
9 User uk executes policy πk in the environment,

collects trajectory Xk = {(sk,h, ak,h, rk,h)h≤H}
and sends back privatized information M(Xk)

10 Update historical data Hk = Hk−1 ∪M(Xk)

Theorem 2. For any privacy mechanismM satisfying
Def. 1 and Def. 2 with ε > 0, δ0 ≥ 0 and bounds
ck,1(ε, δ0, .), ck,2(ε, δ0, .), ck,3(ε, δ0, .) and ck,4(ε, δ0, .),
for any δ > 0 the regret of LDP-OBI is bounded with
probability at least 1− δ by:

R(LDP-OBI,K) ≤ Õ
(

max

{
HS
√
AT,

SAH2cK,3

(
ε, δ0,

3δ

2π2K2

)
,

H2S2AcK,4

(
ε, δ0,

3δ

2π2K2

)
,

SAHcK,2

(
ε, δ0,

3δ

2π2K2

)
,

SAHcK,1

(
ε, δ0,

3δ

2π2K2

)})

(14)

In addition, the combination of M and LDP-OBI is
(ε, δ0)-LDP.

Theorem 2 shows that the regret of LDP-OBI depends
directly on the precision of the privacy mechanism used
though cK,1, . . . , cK,4. Thus improving the precision,
that is to say reducing the amount of noise that needs
to be added to the data to guarantee LDP of the
privacy mechanism directly improves the regret bounds
of LDP-OBI.

5 Choice of Randomizer

In this section, we provide a practical implementation
of LDP-OBI based on different randomizers. We start
by providing a detailed discussion of the Laplace mech-
anism (Dwork and Roth, 2014), including accuracy
(ck,i), privacy and regret guarantees. We then compare
these results to those achievable with other mechanisms.
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Algorithm 3: Laplace mechanism for LDP

Input: Trajectory: X = {(sh, ah, rh) | h ≤ H},
Privacy Parameter: ε0

1 Draw (Yi,X(s, a))(s,a)∈S×A,i≤2 i.i.d Lap(1/ε0) and
(ZX(s, a, s′))(s,a,s′)∈S×A×S i.i.d Lap(1/ε0) and
independent from Yi,X for i ∈ {1, 2}

2 for (s, a) ∈ S ×A do

3 R̃X(s, a) =
∑H
h=1 rh1{sh=s,ah=a} + Y1,X(s, a)

4 Ñr
X(s, a) =

∑H
h=1 1{sh=s,ah=a} + Y2,X(s, a)

5 for s′ ∈ S do

6 Ñp
X(s, a, s′) =∑H−1
h=1 1{sh=s,ah=a,sh+1=s

′} + ZX(s, a, s′)

Output: (R̃X , Ñ
r
X , Ñ

p
X) ∈ RS×A × RS×A × RS×A×S

The detailed derivations for these other mechanisms is
deferred to App. E.

The Laplace mechanism works by injecting Laplace
noise to the aggregated statistic computed from trajec-
tory X.3 The pseudocode is reported in Alg. 3. In the
below theorem, we show that by properly tuning the
parameter ε0 of the Laplace noise, we can prove that
this mechanism is LDP (proof in App. A.1):

Theorem 3. For any ε > 0, the Laplace mechanism
described by Alg. 3 with parameter ε0 = ε/6H is (ε, 0)-
LDP (and thus (ε, δ0)-LDP for every δ0 ≥ 0).

Moreover, due to the sub-exponential nature of Laplace
distribution, we can use the Chernoff concentration
bound to show that Alg. 3 satisfies the requirements
in Def. 2 (see App. A for the proof):

Proposition 2. For any ε > 0, the Laplace mechnism,
Alg. 3, with parameter ε0 = ε/6H satisfies Def. 2
for any δ > 0 and k ∈ N with ck,1(ε, δ) = ck,2(ε, δ),
ck,3(ε, δ) = ck,4(ε, δ) and:

ck,1(ε, δ) = max

{√
k, ln

(
6SA

δ

)} √8 ln
(

6SA
δ

)

ε/6H
,

ck,3(ε, δ) = max

{√
k, ln

(
6S2A

δ

)} √8 ln
(

6S2A
δ

)

ε/6H

As a corollary of Thm. 2, we obtain the following regret
bound for LDP-OBI with Laplace mechanism.

Corollary 1. For any δ′ > 0 the regret of LDP-OBI
using the Laplace mechanism with ε0 = ε/6H, Alg. 3,
is bounded with probability at least 1− δ′ by:

Õ
(

max

{
H3S2A

√
K

ε
,H3/2S

√
AK

})
(15)

and the algorithm is (ε, 0)-LDP.

3A random variable X ∼ Lap(b) a Laplace distribu-
tion with parameter b if and only if: ∀x ∈ R, pX(x) =
1
2b

exp (−|x|/b).

M LDP R(A, T )

L (ε, 0) Õ(H3S2A
√
K/ε)

G (ε, δ0) Õ(H3S2A
√
K ln(1/δ0)/ε)

B (ε, 0) Õ(H
5/2S2A
eε/H−1

√
K)

Table 1: Summary of the guarantees of LDP-OBI with
Laplace (L), Gaussian (G) and Bernoulli (B) mecha-
nisms. We assume ε ∈ (0, 6H) and δ0 > 0. Full regret
bounds are reported in appendix.

Note that the leading term of the regret is Õ(
√
T/ε)

that is compatible with the rates obtained for LDP
bandits (see e.g., Zheng et al., 2020; Ren et al., 2020).
While this shows an optimal dependency w.r.t. the
number of episodes and privacy parameter, it is sub-
optimal in terms of state size, action size and horizon.
Compared to a non-private version of OBI (with a re-

gret of order Õ(H3/2
√
SAK)) (e.g., Azar et al., 2017)

, aside from the 1/ε term which is to be expected, there
is an additional factor of H3/2S3/2

√
A in the leading

term of the regret. We believe that this is due to the
fact that we are having to make S2A terms private
(i.e., the counters Np

X(s, a, s′) must be private for all
(s, a, s′) ∈ S ×A×S). We think the extra dependence
on H comes from diving ε by H to ensure privacy over
the whole trajectory. An other

√
SH factor also comes

the fact that we do not use variance-aware concentra-
tion inequalities contrary to UCB-VI. We investigated
the use of such inequalities but it did not improve the
dependency on S,A and H in the leading terms of the
regret. It is an open question whether this dependence
can be improved or not.

PAC Guarantees. Following the discussion of
Sec. 3.1 in (Jin et al., 2018), we get that our
algorithm LDP-OBI with the Laplace mechanism
finds α-optimal policies in the PAC setting using

Õ
(
H2S2Amax{1,H3S2A/ε2}

α2

)
samples, for any α ∈ (0, H].

Whereas in the non-private case, OBI finds α -optimal

policies using at most Õ
(
H2SA
α2

)
samples.

5.1 Alternative Mechanisms

There are other privacy-preserving mechanisms which
can be used in LDP-OBI, for example, the Bernoulli
mechanism (Erlingsson et al., 2014; Kairouz et al., 2016)
and the Gaussian mechanism (Wang et al., 2019). We
summarize the properties of the different variants of
LDP-OBI in Tab. 1.

From looking at Tab. 1, we note that the Gaussian
mechanism provides a slightly worse privacy guarantee.
While Laplace and Bernoulli can guarantee (ε, 0)-LDP,
the Gaussian mechanism only (ε, δ0)-LDP for some
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Figure 1: Evaluation of the algorithms in the Random-
MDP environment. Top) Cumulative regret. Bottom)
per-step regret (k 7→ Rk/k). Results are averaged
over 20 runs and the the confidence intervals are the
minimum and maximum runs. While the regret looks
almost linear for ε = 0.2, the decreasing trend of the
per-step regret shows that the algorithms are learning.

δ0 > 0. On the other hand, all the mechanisms achieve
a regret bound of order Õ(

√
K). While Laplace and

Gaussian variants are equally affected by the privacy
level ε (whose impact is ε−1), the Bernoulli mechanism
has an exponential dependence in ε similar to the lower
bound. However, this improvement comes at the price
of worse dependency in H when ε is small, and a
worse multiplicative constant in the regret. This is
due to the fact that the Bernoulli mechanism needs to
perturb the counters for each stage h ∈ [H], leading
to up to HS2A obfuscated elements (see App. E.2 for
details). This worse dependence is also observed in
our numerical simulations. All the details about the
Gaussian and Bernoulli mechanism can be found in
App. E and App. E.2, respectively.

6 Numerical Evaluation

In this section, we illustrate the empirical performance
of the proposed algorithms on a toy MDP. To the best
of our knowledge there is no other LDP algorithm for
regret minimization in MDPs in the literature. We
thus compare LDP-OBI with the non-private algo-
rithm UCB-VI (Azar et al., 2017). Since randomized
algorithm proved to be effective in many situations, we
also investigate a Thompson sampling approach. We

introduce and evaluate LDP-PSRL, an LDP variant
of PSRL (Osband et al., 2013). LDP-PSRL is detailed
in App. D where we also show that it is LDP. We leave
the regret proof as an open question.

We consider the RandomMDP environment described
in (Dann et al., 2017) where for each state-action pair
transition probabilities are sampled from a Dirichlet(α)
distribution (with αs,a,s′ = 0.1 for all (s, a, s′)) and
rewards are deterministic in {0, 1} where r(s, a) =
1{Us,a≤0.5} and (Us,a)(s,a)∈S×A ∼ U([0, 1]) are sampled
once when generating the MDP. We set the number
of states S = 3, number of actions A = 2 and horizon
H = 2. We evaluate the regret of our algorithm for
ε ∈ {0.2, 2, 20} and K = 1× 108 episodes. For each ε
we run 20 simulations.

Figure 1 shows that the learning speed of the optimistic
algorithm is severely impacted by the LDP constraint.
This is consistent with our theoretical results. The
reason for this is the very large confidence intervals
that are needed in order to take into account the noise
from the privacy preserving mechanism that is nec-
essary to guarantee privacy. This is not necessarily
the case with LDP-PSRL as in general posterior sam-
pling algorithms are empirically quite robust to noise
in the parameters of the posterior distributions. Al-
though these experimental results only consider a small
MDP, we expect that many of the observations will
carry across to larger, more practical settings. However,
further experiments are needed to conclusively assess
the impact of LDP in large MDPs. In App. F, we
show the impact of the LDP constraint on the collected
trajectories using the Laplace mechanism.

7 Conclusion

In this work, we have introduced the definition of local
differential privacy in RL and designed the first LDP
algorithm, LDP-OBI, for regret minimization in finite-
horizon MDPs. By leveraging new confidence intervals
accounting for the noise introduced by the private
mechanism, we have derived an upper-bound on the
regret of LDP-OBI. This approach leads to suboptimal
dependency on S,A and H compared to the lower
bound we established in Sec. 4.1. Closing this gap
would be an interesting technical question for future
works. Additionally, while we have shown that LDP-
PSRL achieves LDP guarantees and good empirical
performance, a direction for future work is to provide
regret guarantees for this approach.

The study of differential privacy in RL is still recent and
a lot of questions are still not answered. In particular,
we think a promising direction would be to study model-
free techniques for DP that could be used to design
deep RL approaches.
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Local Differentially Private Regret Minimization
in Reinforcement Learning: Supplementary Material

A Local Differential Privacy

A.1 The Laplace mechanism (Alg. 3) satisfies local differential privacy (Def. 2)

We first prove Thm. 3 which states that using Alg. 3 with parameter ε0 = ε/6H guarantee (ε, δ)-LDP. Formally,
we need to show that, for any two trajectories X and X ′ and tuple (r, n, n′), the following inequality holds

P
(
M(X) = (r, n, n′)

)
≤ eεP

(
M(X ′) = (r, n, n′)

)
+ δ (16)

where r, n, n′ are vectors of dimension SA, SA and S2A, respectively. See LDP definition in Def. 1.

Proof of Thm. 3. Let’s consider two trajectories X = {(sh, ah, rh) | h ≤ H} and X ′ = {(s′h, a′h, r′h) | h ≤ H}.
We denote the output of the private randomizer M by M(X) = (R̃X , Ñ

r
X , Ñ

p
X) and M(X ′) = (R̃X′ , Ñ

r
X′ , Ñ

p
X′).

Recall that R̃X(s, a) :=
∑H
h=1 rh1{sh=s,ah=a} + Y1,X(s, a) where (Y1,X(s, a))(s,a)∈S×A are independent Laplace

variables with parameter ε/(6H). Consider a vector r ∈ RS×A, then:

P
(
∀(s, a), R̃X(s, a) = rs,a | X

)

P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

) =
∏

s,a

P
(
Y1,X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} − rs,a | X

)

P
(
Y1,X′(s, a) =

∑H
h=1 r

′
h1{s′h=s,a′h=a} − rs,a | X ′

) (17)

since the Laplace distribution is symmetric. But Y1,X(s, a) and Y1,X′(s, a) are independent random variables for
any state-action pair. Thus:

∏

s,a

P
(
Y1,X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} − rs,a | X

)

P
(
Y1,X′(s, a) =

∑H
h=1 r

′
h1{s′h=s,a′h=a} − rs,a | X ′

) =
∏

s,a

exp
(
ε0

∣∣∣
∑H
h=1(rh1{sh=s,ah=a} − rs,a

∣∣∣
)

exp
(
ε0

∣∣∣
∑H
h=1(r′h1{s′h=s,a′h=a} − rs,a

∣∣∣
)

≤ exp

(
ε0

∑

s,a

∣∣∣∣∣
H∑

h=1

(rh1{sh=s,ah=a} − r′h1{s′h=s,a′h=a})

∣∣∣∣∣

)

≤ exp


ε0

∑

s,a,h

(|rh|1{sh=s,ah=a} + |r′h|1{s′h=s,a′h=a})




= exp

(
ε0

∑

h

(|rh|+ |r′h|)
)
≤ exp (2Hε0) = exp

(ε
3

)

(18)

where we used the definition of Laplace distribution, x 7→ 1
2b exp(|x|/b). Let n ∈ RS×A and n′ ∈ RS×A×S . Similarly,

since Ñr
X(s, a) =

∑H
h=1 1{sh=s,ah=a}+Y2,X(s, a) and Ñp

X(s, a, s′) =
∑H−1
h=1 1{sh=s,ah=a,sh+1=s′}+ZX(s, a, s′), we

have:

P
(
∀(s, a), Ñr

X(s, a) = ns,a | X
)

P
(
∀(s, a), Ñr

X′(s, a) = ns,a | X ′
) ≤ exp

(ε
3

)
(19)

and:

P
(
∀(s, a, s′), Ñp

X(s, a, s′) = n′s,a,s′ | X
)

P
(
∀(s, a, s′), Ñp

X′(s, a, s
′) = n′s,a,s′ | X ′

) ≤ exp
(ε

3

)
(20)
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Then because (Yi,X(s, a))i≤2,(s,a)∈S×A, (ZX(s, a, s′))(s,a,s′)∈S×A×S are independent it holds that:

P
(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)
= P

(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

Thus for any (r, n, n′) ∈ RS×A × RS×A × RS×A×S and any two trajectories X and X ′:

P
(
M(X) = (r, n, n′) | X

)
= P

(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)
(21)

= P
(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)
(22)

because (Y1,X(s, a))(s,a)∈S×A, (Y2,X(s, a))(s,a)∈S×A and (ZX(s, a, s′))(s,a,s′)∈S×A×S are independent. Therefore
using inequalities (18), (19) and (20) in (22), we have:

P
(
M(X) = (r, n, n′) | X

)
= P

(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

≤ exp(ε)P
(
R̃X′ = r | X ′

)
P
(
Ñr
X′ = n | X ′

)
P
(
Ñp
X′ = n′ | X ′

)

= exp(ε)P
(
R̃X′ = r, Ñr

X′ = n, Ñp
X′ = n′ | X ′

)

= exp(ε)P (M(X ′) = (r, n, n′) | X ′)

This concludes the proof.

Before proving Prop. 2 we state the following concentration inequality for the sum of Laplace variables.

Proposition 3. (Dwork and Roth, 2014, Cor. 12.3) Let Y1, . . . , Yk be independent Lap(b) random variables with

b > 0 and δ ∈ (0, 1) then for any ν > bmax
{√

k,
√

ln(2/δ)
}

then:

P

(∣∣∣∣∣
k∑

l=1

Yl

∣∣∣∣∣ > ν
√

8 ln(2/δ)

)
≤ δ

We can now prove Prop. 2 that shows that Alg. 3 satisfies Def. 2.

Proof of Prop. 2. Let X1, . . . , Xk−1 be the k − 1 trajectories generated before episode k ≥ 1. Consider the

private statistic R̃k(s, a) generated by the private randomizer before episode k. Then for any state-action pair
(s, a) ∈ S ×A:

∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ =

∣∣∣∣∣
∑

l<k

(R̃Xl
(s, a)−RXl

(s, a))

∣∣∣∣∣ (23)

=

∣∣∣∣∣
∑

l<k

(
Y1,Xl

(s, a) +

H∑

h=1

rh1{sl,h=s,al,h=a}

)
−
∑

l<k

H∑

h=1

rh1{sl,h=s,al,h=a}

∣∣∣∣∣ (24)

=

∣∣∣∣∣
k−1∑

l=1

Y1,Xl
(s, a)

∣∣∣∣∣ (25)

which is the sum of independent Laplace variables. Let δ > 0. By Prop. 3 we have that with probability at least
1− δ/(3SA) ∣∣∣∣∣

k−1∑

l=1

Y1,Xl
(s, a)

∣∣∣∣∣ ≤
1

ε0
max

{√
k − 1, ln

(
6SA

δ

)}√
8 ln

(
6SA

δ

)
(26)

The same property holds for Ñr
k and Ñp

k and we again apply Prop. 3. Properties in Def. 2 follow from union
bounds.
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A.2 Concentration under Local Differential Privacy (Proof of Prop. 1):

In this subsection, we proceed with the proof of Prop. 1 (recalled below).

Proposition. For any ε0 > 0, δ0 ≥ 0, δ > 0, α > 1 and episode k, using mechanism M, we have that with
probability at least 1− 2δ, for any (s, a) ∈ S ×A

|r(s, a)− r̃k(s, a)| ≤ (α+ 1)ck,2(ε0, δ0, δ) + ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+

√
2 ln(4π2SAHk3/3δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

(27)

||p̃k(· | s, a)− p(· | s, a)||1 ≤
(α+ 1)ck,3(ε0, δ0, δ) + Sck,4(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+

√
14S ln(4π2SAHk3/3δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(28)

with r̃k(s, a) = R̃k(s,a)

Ñr
k (s,a)+αck,2(ε0,δ0,δ)

and p̃k(s′ | s, a) =
Ñp

k (s,a,s′)

Ñp
k (s,a)+αck,3(ε0,δ0,δ)

.

Proof. On the event that all inequalities of Def. 2 holds, we have:
∣∣∣∣∣

R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− Rk(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

∣∣∣∣∣ ≤
ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

(29)

since Ñr
k (s, a) + αck,2(ε0, δ0, δ) > Nk

k (s, a) ≥ 0 with α > 1. But, we also have that with probability 1− δ:
∣∣∣∣∣

Rk(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− r(s, a)

∣∣∣∣∣ ≤
∣∣∣∣∣r(s, a)

(
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− 1

)∣∣∣∣∣ (30)

+

∣∣∣∣∣
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

×
(
Rk(s, a)

Nr
k (s, a)

− r(s, a)

)

︸ ︷︷ ︸
:=rk(s,a)−r(s,a)

∣∣∣∣∣

≤ Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

L(δ)√
Nr
k (s, a)

+ r(s, a)

∣∣∣∣∣1−
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

∣∣∣∣∣ (31)

≤ L(δ)
√
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
(α+ 1)ck,2(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

(32)

where the second inequality follows from Chernoff-Hoeffding bound on the empirical non-private rewards and
L(δ) =

√
2 ln(4π2SAHk3/3δ), and we use Def. 2 for the last. Furthermore:

L(δ)
√
Nr
k (s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

≤
L(δ)

√
Ñr
k (s, a) + ck,2(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

≤ L(δ)√
Ñr
k (s, a) + αck,2(ε0, δ0, δ)

(33)

Therefore combining Eq. (29), (32) and (33), we have:
∣∣∣∣∣

R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

− r(s, a)

∣∣∣∣∣ ≤
ck,1(ε0, δ0, δ) + (α+ 1)ck,2(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
L(δ)√

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

thus proving the first statement of the proposition. Now, let’s bound the deviation between the private estimate
p̃k and the true transition dynamics p. First, because α > 1, we have that

∑
s′ Ñ

p
k (s, a, s′) + αck,3(ε0, δ0, δ) ≥∑

s′ N
p
k (s, a, s′) + (α− 1)ck,3(ε0, δ0, δ) > 0. We start by decomposing the error as

∑

s′∈S
|p̃(s′|s, a)− p(s′|s, a)| =

∑

s′∈S

∣∣∣∣∣
Ñp
k (s, a, s′)

∑
s′ Ñ

p
k (s, a, s′) + αck,3(ε0, δ0, δ)

− p(s′|s, a)

∣∣∣∣∣ (34)

≤
∑

s′∈S

∣∣∣∣∣
Np
k (s, a, s′)

∑
s′ Ñ

p
k (s, a, s′) + αck,3(ε0, δ0, δ)

− p(s′ | s, a)

∣∣∣∣∣
︸ ︷︷ ︸

1○

+
∑

s′∈S

∣∣∣∣∣
Ñp
k (s, a, s′)−Np

k (s, a, s′)
∑
s′ Ñ

p
k (s, a, s′) + αck,3(ε0, δ0, δ)

∣∣∣∣∣
︸ ︷︷ ︸

2○

(35)



Manuscript under review by AISTATS 2021

Recall that
∑
s′ Ñ

p
k (s, a, s′) = Ñp

k (s, a) and
∑
s′ N

p
k (s, a, s′) = Np

k (s, a). Therefore:

1○ =
∑

s′∈S

∣∣∣∣∣
Np
k (s, a, s′)

Np
k (s, a)

Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

− p(s′ | s, a)

∣∣∣∣∣

=
∑

s′

∣∣∣∣∣∣∣∣∣

(
Np
k (s, a, s′)

Np
k (s, a)

− p(s′|s, a)

)
Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)︸ ︷︷ ︸

>0

+p(s′|s, a)

(
Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

− 1

)
∣∣∣∣∣∣∣∣∣

≤
∑

s′

(
p(s′|s, a)

(α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

)
+

Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

||pk(·|s, a)− p(·|s, a)||1

(a)

≤ (α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
Np
k (s, a)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

L(δ)√
Np
k (s, a)

≤ (α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
L(δ)√

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(36)

where L(δ) =
√

14S ln(4π2SAHk3/3δ) and inequality (a) follows from the Weissman inequality (Weissman et al.,
2003), and we have again used the fact that the inequalities in Def. 2 hold.

In addition,we have:

2○ ≤
∑

s′∈S

|ck,4(ε0, δ0, δ)|
Ñp
k (s, a) + αck,3(ε0, δ0, δ)

=
Sck,4(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(37)

Hence putting together Eq. (37) and Eq. (36), we have:

∑

s′∈S

∣∣∣∣∣
Ñp
k (s, a, s′)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

− p(s′ | s, a)

∣∣∣∣∣ ≤
Sck,4(ε0, δ0, δ) + (α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
L(δ)√

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(38)

which gives the result.
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B Regret Lower Bound (Proof of Thm. 1)

Let’s consider the following MDP for a given number of states S and actions A. The initial state 0 has A actions
which deterministically lead the next state. The MDP is a tree with A children for each node and exactly S − 2
states.

We denote by x1, · · · , xL the leaves of this tree. There exists a unique action a? and leaf xi? such that:
P(+ | xi? , a?) = 1/2 + ∆ for a chosen ∆. Each other leaf transitions with equal probability to two states + and −
where each has a reward of 1 and 0. All other states have a reward of 0 and every other transition is deterministic.

0

1

4 5 6

2

7 8 9

3

10 11 12

+ −

Figure 2: Example of an MDP described in this section with S = 15 and A = 3

Once the agent arrives at + or −, they stay there until the end of the episode. In addition, we assume that
H ≥ 2 ln(S − 2)/ ln(A) + 2. Let d > 0 be the depth of the tree, i.e., the depth of the tree with S − 2 nodes is
d− 1 and nodes +,− are at depth d. Then leaves x1, . . . , xL are at depth either d− 1 or d− 2. Without loss of
generality we assume that all x1, . . . , xL are at depth d− 1, i.e., the number of leaves is L = Ad−1 ≥ (S − 2)/2
that is to say the tree without the nodes + and − is a perfect A-ary tree. In the general case we have that
L ≥ (S − 2)/2.

For a policy π, the value function can be written:

V π(0) = (H − d)P(sd = +) = (H − d)(1/2 + ∆P (sd−1 = xi? , ad−1 = a?)) (39)

Thus the regret can be written as:

R(K, I) = (H − d)∆
(
K −

K∑

k=1

P (sk,d−1 = xi? , ak,d−1 = a?)

︸ ︷︷ ︸
:=E(T (K,I))

)
(40)

where I = (xi? , a
?) is the optimal state action pair and we define T (K, I) as:

T (K, I) =

K∑

k=1

1{sk,d−1=xi? ,ak,d−1=a?}. (41)

T (K, I) is a function of the history observed by the algorithm. Since we are in the LDP setting, we can write this
history as:

M(HK) = {M(Xl) | l ≤ K} (42)

where Xl = {(sl,h, al,h, rl,h) | h ≤ H} is the trajectory observed by the user for episode l and M is a privacy
mechanism which maintains ε-LDP. Thus T (K, I) is a function of M(HK). By Lem. A.1 in (Auer et al., 2002):

E(T (K, I)) ≤ E0(T (K, I)) +K

√
KL
(
P0(M(HK)) || P(M(HK))

)
(43)

where E0 is the expectation when ∆ = 0. But, because we can see T (K, I) as a function on the history only,
thus we can use Exercise 14.4 in (Lattimore and Szepesvári, 2020) which states that for any random variable
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Y : Ω→ [a, b] with (Ω,F) a measurable space, a < b and two distributions P and Q on F , then:

∣∣∣∣
∫

w∈Ω

Y (w)dP (w)−
∫

w∈Ω

Y (w)dQ(w)

∣∣∣∣ ≤ (b− a)

√
KL(P ||Q)

2
(44)

In our case the random variable Y is the combination of T (K, I) and the privacy mechanism M so we have:

E(T (K, I)) ≤ E0(T (K, I)) +K

√
KL
(
P0(HK) || P(HK)

)
(45)

Putting together Eq. (43) and (45) we have:

E(T (K, I)) ≤ E0(T (K, I)) +K min

{√
KL
(
P0(M(HK)) || P(M(HK))

)

︸ ︷︷ ︸
1○

,

√
KL
(
P0(HK) || P(HK)

)

︸ ︷︷ ︸
2○

}
(46)

Bounding 1○. Now we bound the KL-divergence between the two measures for the history. Using the chain
rule we have:

KL (P0(M(HK)) || P(M(HK))) =

K∑

k=1

EHk−1∼P0
(KL (P0(·|M(Hk−1)) || P(·|M(Hk−1)))) (47)

But because M is an ε-LDP mechanism, Thm. 1 in (Duchi et al., 2013) ensures that:

KL (P0(·|M(Hk−1)) || P(·|M(Hk−1))) ≤ 4(exp(ε)− 1)2KL (P0(·|Hk−1) || P(·|Hk−1)) (48)

Additionally, the KL-divergence can be written as:

KL (P0(·|Hk−1) || P(·|Hk−1)) =

H∑

h=1

EXk∼P0

(
ln

(
P0(sk,h, ak,h, rk,h) | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)

P(sk,h, ak,h, rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)

))
(49)

where Xk = {(sk,h, ak,h, rk,h) | h ≤ H} is a trajectory sampled from the MDP with the transitions distributed
according to P0 and for each step h, sk,h is a state, ak,h an action and rk,h the reward associated with (sk,h, ak,h).

Therefore for a step h ≥ 1,

ln (P0(sk,h, ak,h, rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)) = ln (P0(sk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1))

+ ln (P0(ak,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h))

+ ln (P0(rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h, ak,h))

By the Markov property of the environment:

ln (P0(sk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1)) = ln (P0(sk,h | sk,h−1, ak,h−1)) (50)

Also, since the reward only depends on the current state-action pair:

ln (P0(rk,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h, ak,h)) = ln (P0(rk,h | sk,h, ak,h)) . (51)

The same results holds for P, thus:

KL (P0(·|Hk−1) || P(·|Hk−1)) =

H∑

h=1

EXk∼P0

(
ln

(
P0(sk,h | sk,h−1, ak,h−1)

P0(sk,h | sk,h−1, ak,h−1)

)
(52)

+ ln

(
P0(ak,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h)

P(ak,h | Hk−1, (sk,j , ak,j , rk,j)j≤h−1, sk,h)

)
+ ln

(
P0(rk,h | sk,h, ak,h)

P(rk,h | sk,h, ak,h)

))
(53)

But for P and P0 the rewards are distributed accordingly to the same distribution hence ln
(

P0(rk,h|sk,h,ak,h)
P(rk,h|sk,h,ak,h)

)
= 0

for each h ≤ H. Also, the action taken at each step depends only the history of data and the current state, thus
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ln
(

P0(ak,h|Hk−1,(sk,j ,ak,j ,rk,j)j≤h−1)

P(ak,h|Hk−1,(sk,j ,ak,j ,rk,j)j≤h−1)

)
= 0. Lastly, transition dynamics between P and P0 only differ when at step

d− 1 thus for all h 6= d− 1 , ln
(

P0(sk,h|sk,h−1,ak,h−1)
P0(sk,h|sk,h−1,ak,h−1)

)
= 0. Overall, we get:

KL (P0(·|Hk−1) || P(·|Hk−1)) =

L∑

l=1

A∑

a=1

∑

j∈{−,+}
EXk∼P0

(
ln

(
P0(j | xl, a)

P(j | xl, a)

)
1{sk,d−1=xl,ak,d−1=a,sk,d=j}

)

Finally, for j ∈ {−,+}, xl 6= xi? and a 6= a?, P(j | xl, a) = P0(j | xl, a). Hence,

KL (P0(·|Hk−1) || P(·|Hk−1)) =
1

2
ln

(
1

1− 4∆2

)
EXk∼P0

(
1{sk,d−1=xi? ,ak,d−1=a?,}

)
(54)

where we have used P(+ | xi? , a?) = 1
2 + ∆, P0(+ | xi? , a?) = 1

2 , P(− | xi? , a?) = 1
2 −∆ and P0(− | xi? , a?) = 1

2 .

Therefore summing over the episodes, we get:

KL
(
P0(M(HK)) || P(M(HK))

)
≤ 2(exp(ε)− 1)2 ln

(
1

1− 4∆2

) K∑

k=1

P0 (sk,d−1 = xi? , ak,d−1 = a?)

= 2(exp(ε)− 1)2 ln

(
1

1− 4∆2

)
E0(T (K, I))

(55)

Bounding 2○. Using again the chain rule of the KL-divergence, we have that:

KL (P0(HK) || P(HK)) =

K∑

k=1

EHk−1∼P0
(KL (P0(·|Hk−1) || P(·|Hk−1))) (56)

Therefore, using Eq. (54), we have:

KL (P0(HK) || P(HK)) =

K∑

k=1

EHk−1∼P0

(
1

2
ln

(
1

1− 4∆2

)
EXk∼P0

(
1{sk,d−1=xi? ,ak,d−1=a?,}

))

=
1

2
ln

(
1

1− 4∆2

)
E0(T (K, I))

(57)

Finishing the proof. Hence using Eq. (55) and Eq. (57) in Eq. (46):

E(T (K, I)) ≤ E0(T (K, I)) +K min

{√
2(exp(ε)− 1),

1√
2

}√
E0(T (K, I)) ln

(
1

1− 4∆2

)
(58)

Now, let’s assume that I = (xi? , a
?) is distributed uniformly over {x1, . . . , xL} × J1, AK. That is to say, that

the leaf i? ∼ U(J1, LK) and given the realization of i?, a? is drawn uniformly in the action set of node xi? i.e.,
a? ∼ U(J1, AK). We denote the expectation over the random variable (xi? , a

?) by EI . It then holds that:

EIE0(T (K, I)) = E0

K∑

k=1

L∑

l=1

A∑

a=1

1

LA
1{sk,d−1=s,ak,d−1=a} =

K

LA
(59)

Therefore thanks to Jensen’s inequality the regret is lower-bounded by:

EIR(K, I) ≥ (H − d)∆K

(
1− 1

LA
−min

{√
2(exp(ε)− 1),

1√
2

}√
K

LA
ln

(
1 +

4∆2

1− 4∆2

))
(60)

Therefore for LA ≥ 2, K ≥ LA
min{8(exp(ε)−1),4}2 and choosing ∆ =

√
LA
K × 1

16
√

2 min{(exp(ε)−1), 12} we get that:

min

{√
2(exp(ε)− 1),

1√
2

}√
K

LA
ln

(
1 +

4∆2

1− 4∆2

)
≤ 1

4
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Hence:

max
I∈{x1,...,xL}×J1,AK

R(K, I) ≥ EIR(K, I) ≥ (H − d)
√
KLA

64 min
{

(exp(ε)− 1), 1
2

} (61)

And because I is a finite random variable there exist I? such that maxI∈{x1,...,xL}×J1,AKR(K, I) = R(K, I?).

R(K, I?) ≥ (H − d)
√
KLA

64 min
{

(exp(ε)− 1), 1
2

} (62)

Thus we have that there exists an MDP such that its frequentist regret is Ω
(

H
√
SAK

min{1,exp(ε)−1}

)
.
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C Regret Upper Bound (Proof of Theorem 2)

In this section, we prove Thm 2.

Theorem. For any privacy mechanism M satisfying Def. 1 and Def. 2 with ε0 > 0, δ0 ≥ 0 and bounds
ck,1(ε0, δ0, .), ck,2(ε0, δ0, .), ck,3(ε0, δ0, .) and ck,4(ε0, δ0, .), for any δ > 0 the regret of LDP-OBI is bounded with
probability at least 1− δ by:

R(LDP-OBI,K) ≤ Õ
(

max

{
HS
√
AT, SAH2cK,3

(
ε0, δ0,

3δ

2π2K2

)
, H2S2AcK,4

(
ε0, δ0,

3δ

2π2K2

)
,

SAHcK,2

(
ε0, δ0,

3δ

2π2K2

)
, SAHcK,1

(
ε0, δ0,

3δ

2π2K2

)}) (63)

In addition, the combinaison of M and LDP-OBI is (ε0, δ0)-LDP.

Good Event: Before proceeding the proof of the regret we define a good event under which all concentration
inequalities holds with probability at least 1− δ. First, we define the event that all inequalities from Def. 2 holds.
Let:

L1,k =
⋂

s,a

{∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ ≤ ck,1(ε0, δ0, 3δ/2k

2π2)
}

L2,k =
⋂

s,a

{∣∣∣Ñr
k (s, a)−Nr

k (s, a)
∣∣∣ ≤ ck,2(ε0, δ0, 3δ/2k

2π2)
}

L3,k =
⋂

s,a

{∣∣∣∣∣
∑

s′

Np
k (s, a, s′)−

∑

s‘

Ñp
k (s, a, s′)

∣∣∣∣∣ ≤ ck,3(ε0, δ0, 3δ/2k
2π2)

}

L4,k =
⋂

s,a,s′

{∣∣∣Np
k (s, a, s′)− Ñp

k (s, a, s′)
∣∣∣ ≤ ck,4(ε0, δ0, 3δ/2k

2π2)
}

then thanks to Def. 2 we have :

P

(
+∞⋃

k=1

Lc1,k ∪ Lc2,k ∪ Lc3,k ∪ Lc4,k

)
≤

+∞∑

k=1

3δ

π2k2
=
δ

4
(64)

In addition, for all k ∈ N?, we can define rk(s, a) = Rk(s, a)/Nr
k (s, a) and pk = Np

k (s, a, s′)/
∑
s′ N

p
k (s, a, s′) as

the empirical reward and transition probability computed with the non-private counters. Note that in this case

Nk(s, a) := Nr
k (s, a) =

∑
s′ N

p
k (s, a, s′). We also define β

r

k(δ, s, a) =
√

2 ln(1/δ)
Nk(s,a) and β

p

k(δ, s, a) =
√

14S log(1/δ)
Nk(s,a) . as

the size of the confidence intervals using Hoeffding and Weissman inequalities. Thus, we get:

P

(
+∞⋃

k=1

⋃

s,a

|rk(s, a)− r(s, a)| ≥ βrk(3δ/4π2SAHk3, s, a)

)
(65)

≤
+∞∑

k=1

∑

s,a

P

(
|rk(s, a)− r(s, a)| ≥

√
2 ln(4π3SAHk3/3δ)

Nk(s, a)

)
(66)

≤
+∞∑

k=1

∑

s,a

kH∑

n=0

P

(
|rk(s, a)− r(s, a)| ≥

√
2 ln(4π2SAHk3/3δ)

n

)
≤

+∞∑

k=1

∑

s,a

kH∑

n=0

3δ

4π2SHAk3
≤ δ

8
(67)

The same result holds for the transition dynamics, that is to say:

P

(
+∞⋃

k=1

⋃

s,a

||pk(·|s, a)− p(·|s, a)||1 ≥ β
p

k(3δ/4π2SAHk3, s, a)

)
≤ δ

8
(68)
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Thus we can define the good event Gk by:

Gk =

k−1⋂

l=1

4⋂

i=1

Li,l ∩
⋂

s,a

{
|rl(s, a)− r(s, a)| ≤ βrl (3δ/(4π2SAHl3), s, a)

}
(69)

∩
{
||pk(·|s, a)− p(·|s, a)||1 ≤ β

p

k(3δ/(4π2SAHl3), s, a)
}

(70)

Then P
(⋂+∞

k=1 Gk
)
≥ 1− δ/2 and Gk ⊂ σ(Hk) (i.e., the history before episode k).

Optimism: For each episode k, the value function Vk,1 computed by LDP-OBI is optimistic, that is to say:
Vk,h(s) ≥ V ?h (s) for any h and state s. We sum up this with the following lemma:

Lemma 1. For any episode k ∈ J1, kK, the value function Vk,1 computed by running Alg. 2 is such that with
probability 1− δ:

∀s ∈ S, h ∈ J1, HK Vk,h(s) ≥ V ?h (s) (71)

Proof. Fix an episode k then we proceed by backward induction conditioned on the event Gk:

• For h = H, we have for any state s and action a:

Vk,H(s) ≥ Qk,H(s, a) ≥ r̃k(s, a) + βrk(s, a) ≥ r(s, a) thanks to Eq. (9) (72)

• For h < H when the property is true for h+ 1, we get for any state-action (s, a):

Vk,h(s) ≥ Qk,h(s, a) = r̃k(s, a) + βrk(s, a) + p̃k(·|s, a)ᵀVk,h+1 +Hβpk(s, a) (73)

≥ r(s, a) + p(·|s, a)ᵀVk,h+1 ≥ Q?h(s, a) (74)

where we used the fact that ‖(p̃k(·|s, a)− p(·|s, a))ᵀVk,h+1‖ ≤ ‖p̂k(·|s, a)− p(·|s, a)‖1‖Vk,h+1‖∞ ≤ Hβpk(s, a)
and the inductive hypothesis.

Regret Decomposition: We are now ready to analyze the regret of LDP-OBI. Consider an episode k, then,
conditioned on Gk:

V ?1 (sk,1)− V πk
1 sk,1 ≤ Vk,1(sk,1)− V πk

1 (sk,1) (75)

≤ r̃k(sk,1, ak,1) + βrk(sk,1, ak,1)− r(sk,1, ak,1) + p̃k(·|s, a)ᵀVk,2 − p(·|s, a)ᵀV πk
2 +Hβpk(sk,1, ak,1) (76)

≤ (p(·|s, a)ᵀ(Vk,2 − V πk
2 )− (Vk,2(sk,2)− V πk

2 (sk,2))︸ ︷︷ ︸
:=ηk,1

+Vk,2(sk,2)− V πk
2 (sk,2) + 2Hβpk(sk,1, ak,1) (77)

+ 2βrk(sk,1, ak,1)

=

H−1∑

h=1

ηk,h + 2

H∑

h=1

βrk(sk,h, ak,h) +Hβpk(sk,h, ak,h) (78)

Then, observe that (ηk,h)k,h is a Martingale Difference Sequence with respect to the history before episode k

and thanks to Azuma-Hoeffding inequality we have that with probability at least 1− δ/2,
∑K
k=1

∑H−1
h=1 ηk,h ≤

2H
√
KH ln(2/δ). Therefore, we have with probability at least 1− δ:

R(LDP-OBI,K) ≤ 2

K∑

k=1

H∑

h=1

βrk(sk,h, ak,h) +Hβpk(sk,h, ak,h) + 2H
√
T ln(2/δ)︸ ︷︷ ︸

MDS error term

(79)
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Let νk(s, a) =
∑H
h=1 1{sk,h=s,ak,h=a}. Then summing over the reward bonus and using the fact that α > 1, we

get:

K∑

k=1

H∑

h=1

βrk(sk,h, ak,h) =
∑

s,a,k

νk(s, a)Lk,r√
Ñr
k (s, a) + αck,2

(
ε0, δ0,

3δ
2π2k2

) +
∑

s,a,k

νk(s, a)(α+ 1)ck,2
(
ε0, δ0,

3δ
2π2k2

)

αck,2
(
ε0, δ0,

3δ
2π2k2

)
+ Ñr

k (s, a)

+
∑

s,a,k

νk(s, a)ck,1
(
ε0, δ0,

3δ
2π2k2

)

αck,2
(
ε0, δ0,

3δ
2π2k2

)
+ Ñr

k (s, a)

(80)

where Lk,r =
√

2 ln
(

4π2SAHk3

3δ

)
. Then,

(80) ≤
∑

s,a,k

νk(s, a)Lk,r√
Nk(s, a) + (α− 1)ck,2

(
ε0, δ0,

3δ
2π2k2

) +
νk(s, a)(α+ 1)ck,2

(
ε0, δ0,

3δ
2π2k2

)

(α− 1)ck,2
(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

(81)

+
∑

s,a,k

νk(s, a)ck,1
(
ε0, δ0,

3δ
2π2k2

)

(α− 1)ck,2
(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

≤
∑

s,a,k

νk(s, a)LK,r√
Nk(s, a)

+

(
(α+ 1)cK,2

(
ε0, δ0,

3δ

2π2K2

)
+ cK,1

(
ε0, δ0,

3δ

2π2K2

))∑

k,s,a

νk(s, a)

Nk(s, a)
(82)

≤ 2

(
(α+ 1)cK,2

(
ε0, δ0,

3δ

2π2K2

)
+ cK,1

(
ε0, δ0,

3δ

2π2K2

))
SA(ln(2TSA) +H) (83)

+
√

6 ln (14SAT/δ)
(√

2SAT +HSA
)

where the last inequality comes from Lem. 19 in (Jaksch et al., 2010). For the sum of the bonus on the transition
dynamics we have that:

K∑

k=1

H∑

h=1

Hβpk(sk,h, ak,h) =
∑

s,a,k

Hνk(s, a)Lk,p√
Ñp
k (s, a) + αck,3

(
ε0, δ0,

3δ
2π2k2

) +
∑

s,a,k

HSνk(s, a)ck,4
(
ε0, δ0,

3δ
2π2k2

)

αck,3
(
ε0, δ0,

3δ
2π2k2

)
+ Ñp

k (s, a)

+
∑

s,a,k

Hνk(s, a)(α+ 1)ck,3
(
ε0, δ0,

3δ
2π2k2

)

αck,3
(
ε0, δ0,

3δ
2π2k2

)
+ Ñp

k (s, a)

(84)

where Lk,p =
√

14S ln
(

4π2SAHk3

3δ

)
. Then,

(84) ≤
∑

s,a,k

Hνk(s, a)Lk,p√
Nk(s, a) + (α− 1)ck,3

(
ε0, δ0,

3δ
2π2k2

) +
∑

s,a,k

Hνk(s, a)(α+ 1)ck,3
(
ε0, δ0,

3δ
2π2k2

)

(α− 1)ck,3
(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

(85)

+
∑

k,s,a

HSck,4
(
ε0, δ0,

3δ
2π2k2

)

(α− 1)ck,3
(
ε0, δ0,

3δ
2π2k2

)
+Nk(s, a)

≤
∑

s,a,k

Hνk(s, a)LK,p√
Nk(s, a)

+

(
(α+ 1)cK,3

(
ε0, δ0,

3δ

2π2K2

)
+ ScK,4

(
ε0, δ0,

3δ

2π2K2

))∑

k,s,a

Hνk(s, a)

Nk(s, a)
(86)

≤ 2SAH

(
(α+ 1)cK,3

(
ε0, δ0,

3δ

2π2K2

)
+ ScK,4

(
ε0, δ0,

3δ

2π2K2

))
(ln(2TSA) +H) (87)

+H
√

46S ln (14SAT/δ)
(√

2SAT +HSA
)

where the last inequality comes from (Jaksch et al., 2010, Lem. 19) and (Fruit et al., 2020, Lem. 8). Hence
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putting everything together, we get that with probability 1− δ:

R(LDP-OBI,K) ≤ 2SAH

(
(α+ 1)cK,3

(
ε0, δ0,

3δ

2π2K2

)
+ ScK,4

(
ε0, δ0,

3δ

2π2K2

))
(ln(2TSA) +H)

+H
√

46S ln(14SAT/δ)(
√

2SAT +HSA) +
√

6 ln(14SAT/δ)(
√

2SAT +HSA)

+2

(
(α+ 1)cK,2

(
ε0, δ0,

3δ

2π2K2

)
+ cK,1

(
ε0, δ0,

3δ

2π2K2

))
SA(ln(2TSA) +H) + 2H

√
T ln(2/δ)

In addition, because LDP-OBI has only access to the privatized data, that is to say it only uses the output of
M({(sk,h, ak,h, rk,h)h≤H}) for each episode k, the LDP constraint is satsified as long as the privacy mechanism
M satisfies Def. 1.

Note: the proof of this regret upper-bound relies on concentration inequalities more generally used in the
average reward regret minimization setting. That is to say, we directly study the error between the estimated
model and the true model, i.e., |r̃k − r| and ||p̃k(. | s, a)− p(. | s, a)||1 for each s, a. In the non-private setting, it
is possible to get a more refined regret using more precise concentration inequalities, mainly Bernstein inequality
and other tools introduced in (Azar et al., 2017). However, in the private setting, using such results only leads to
a gain in lower order terms and terms independent of ε while the technical derivations are much more intricate.
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D Posterior Sampling for Local Differential Privacy

The Posterior Sampling for Reinforcement Learning algorithm (PSRL, Osband et al., 2013) is a Thompson
Sampling based algorithm for Reinforcement Learning. It works by maintaining a Bayesian posterior distribution
over MDPs. We focus on a particular instantiation of PSRL where for each state-action pair (s, a) we have an
independent Gaussian prior for the reward distribution and a Dirichlet prior for the transition dynamics. With
those priors, the posterior distributions are Normal-Gamma and Dirichlet distributions.

At the beginning of episode k and for a given pair (s, a) ∈ S ×A, let αk(s, a) ∈ (R?+)S be such that the posterior
distribution over the transition dynamics is Dir(αk(s, a)). In addition, let’s note µk(s, a) ∈ R, λk(s, a) ∈ R?+,
νk(s, a) ∈ R?+ and βk(s, a) ∈ R?+ the parameters of the Normal-Gamma posterior distributions. Using standard
results from Bayesian Learning we have that:

∀s′ ∈ S αk(s, a) = α0(s, a) +Nk(s, a, s′) (88)

λk(s, a) = λ0(s, a) +Nk(s, a) (89)

νk(s, a) = ν0(s, a) +
Nk(s, a)

2
(90)

µk(s, a) =
λ0(s, a)µ0(s, a) +Nk(s, a)R̂k(s, a)

λ0(s, a) +Nk(s, a)
(91)

βk(s, a) = β0(s, a) +
1

2
V̂ar(R(s, a)) +

Nk(s, a)λ0(s, a)

2(λ0(s, a) +Nk(s, a))

(
R̂k(s, a)− µ0(s, a)

)2

(92)

where α0, µ0, λ0, ν0, β0 are prior parameters provided at the beginning of the algorithm. We denote by Nk(s, a),
the number of visits to the state-action pair (s, a), Nk(s, a, s′) the number visits to (s, a, s′), R̂k(s, a) the average

reward observed for (s, a) and V̂ar(R(s, a)) the empirical variance for (s, a).

At each episode k, PSRL samples an MDP from the posterior distributions, then computes the optimal policy
and executes it in the true MDP. Osband et al. (2013) showed that the Bayesian regret of this algorithm is

bounded by Õ
(
HS
√
AT
)

.

Locally Differentially Private Posterior Sampling for Reinforcement Learning: We now discuss how
to adapt PSRL to ensure it is locally differentially private. Def. 1 states that LDP is ensured at the collection
time of trajectories therefore it is enough for us to design a LDP posterior sampling algorithm which takes as
input the trajectories outputted by a mechanism similar to Alg. 3. Here, we use the LDP mechanism to pertub
the statistics used to define the parameters of the posterior distribution in PSRL. More precisely, we replace the
aggregate counts in Eqs. 88-92 by noisy counts provided by an LDP mechanism. In order to do this, we need to
modify the initial values of those parameters to guarantee they are non-negative.

In this appendix, we assume that the privacy-preserving mechanism M is such that for a given trajectory X,
M(X) = (R̃X , R̃2,X , Ñ

r
X , Ñ

p
X) where R̃X , R̃2,X , Ñ

r
X and Ñp

X are noisy version of the following aggregate statistics:

RX(s, a) =

H∑

h=1

rh1{sh=s,ah=a}, R2,X(s, a) =

H∑

h=1

r2
h1{sh=s,ah=a}

Nr
X(s, a) =

H∑

h=1

1{sh=s,ah=a}, Np
X(s, a, s′) =

H−1∑

h=1

1{sh=s,ah=a,sh+1=s′}

In particular, R̃X , Ñ
r
X and Ñp

X are defined as for the optimistic algorithm in Section 3.1 and R̃2,X is a privatized

version of R2,X(s, a) =
∑H
h=1 r

2
h1{sh=s,ah=a} for a trajectory X.
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Algorithm 4: LDP-PSRL

Input: Initial values: α0, µ0, λ0, ν0 and β0
1 for episodes k = 1, . . . ,K do
2 Draw empirical MDP, θk from the posterior and compute πk as the optimal policy for MDP θk
3 User uk executes policy πk, collect trajectory Xk = {(sk,h, ak,h, rk,h) | h ≤ H}
4 Update noisy counts with (R̃Xk (s, a), R̃Xk,2(s, a), Ñr

Xk
(s, a), Ñp

Xk
(s, a)) and posterior distribution

The posterior updates we use in LDP-PSRL are then:

∀s′ ∈ S α̃k(s, a) = α0(s, a) + Ñp
k (s, a, s′) (93)

µ̃k(s, a) =
λ0(s, a)µ0(s, a) + R̃k(s, a)

λ0(s, a) + Ñr
k (s, a)

(94)

λ̃k(s, a) = λ0(s, a) + Ñr
k (s, a) (95)

ν̃k(s, a) = α̃0(s, a) +
Ñr
k (s, a)

2
(96)

β̃k(s, a) = β0(s, a) +
λ0(s, a)Ñr

k (s, a)µ2
0(s, a)− R̃2

k(s, a)

2(λ0(s, a) + Ñr
k (s, a))

+
1

2

∑

l≤k−1

R̃2,l −
µ0(s, a)R̃k(s, a)

λ0(s, a) + Ñr
k (s, a)

(97)

In the following, we choose the Laplace mechanism as our privacy-preserving mechanism for LDP-PSRL. That is
to say for each trajectory X, we add independent Laplace variables to (RX(s, a), RX,2(s, a), Nr

X(s, a), Np
X(s, a))

with parameter 8H/ε. Following the same argument outlined in the proof of Thm. 3, we can show that this
privacy-preserving mechanism is (ε, 0)-LDP.

To ensure positivity, by concentration of Laplace variables we set the initial values of the parameters of the
posterior distributions to:

α0(s, a, s′) = max{
√
KS, ln(6S2A/δ)}

√
8 ln (6S2A/δ)

ε0
(98)

µ0(s, a) = 0 (99)

λ0(s, a) = max{
√
K, ln(6SA/δ)}

√
8 ln (6SA/δ)

ε0
(100)

ν0(s, a) = max{
√
K, ln(6SA/δ)}

√
8 ln (6SA/δ)

ε0
(101)

β0(s, a) = 5 max{
√
K, ln(6SA/δ)}

√
8 ln (6SA/δ)

ε0
(102)

where K is the total number of episodes.

The pseudocode of LDP-PSRL is reported in Alg. 4. While we have shown that this algorithm is ε-LDP and
empirically outperforms optimistic approaches, we leave the regret analysis to future work.
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E Other Privacy Preserving Mechanism:

We have shown in App. A.1 that the Laplace mechanism, Alg. 3, satisfies Def. 2. However it is not the only
mechanism to do so. In this appendix we present the Gaussian and Bernoulli mechanism and show that these
also satisfy Def. 2.

E.1 Gaussian Mechanism:

The Gaussian mechanism is a fundamental mechanism in the differential privacy literature (see e.g., Dwork
and Roth, 2014). However, contrary to the Laplace mechanism the Gaussian mechanism can only guarantees
(ε, δ)-LDP for δ > 0. The mechanism is based on the same idea as the Laplace mechanism, that is to say it adds
Gaussian noise to the result of a given computation on the input data. This noise is centered and the standard
deviation σ(ε, δ) is cH

ε0
.

Algorithm 5: Gaussian mechanism for LDP

Input: Trajectory: X = {(sh, ah, rh) | h ≤ H}, Privacy Parameter: ε0, c,
1 Draw (Yi,X(s, a))(s,a)∈S×A,i≤2 i.i.d N

(
0, σ2

)
and (ZX(s, a, s′))(s,a,s′)∈S×A×S i.i.d N

(
0, σ2

)
and independent from

Yi,X for i ∈ {1, 2} with σ = cH/ε0
2 for (s, a) ∈ S ×A do

3 R̃X(s, a) =
∑H
h=1 rh1{sh=s,ah=a} + Y1,X(s, a)

4 Ñr
X(s, a) =

∑H
h=1 1{sh=s,ah=a} + Y2,X(s, a)

5 for s′ ∈ S do

6 Ñp
X(s, a, s′) =

∑H−1
h=1 1{sh=s,ah=a,sh+1=s

′} + ZX(s, a, s′)

Output: (R̃X , Ñ
r
X , Ñ

p
X) ∈ RS×A × RS×A × RS×A×S

In the following, we show that the Gaussian mechanism almost satisfies Def. 2. The Gaussian mechanism can not
guarantee (ε0, 0)-LDP for any ε0 > 0, however we show that it satisfies the other necessary conditions, including
(ε0, δ)-LDP for any δ > 0. First, the mechanism guarantees Local Differential Privacy for high enough noise.

Proposition 4. For any 1 ≥ ε0 > 0 and δ0 > 0 and parameter c > 4 ln
(

24
δ0

)
, the Gaussian mechanism, Alg. 5,

is (ε0, δ0)-LDP.

Proof of Prop. 4: The proof is based on the proof presented in (Dwork and Roth, 2014). Similarly to the proof
of Prop. 2 let’s consider two trajectories X = {(sh, ah, rh) | h ≤ H} and X ′ = {(s′h, a′h, r′h) | h ≤ H} and also

denote the output of the private randomizer M by M(X) = (R̃X , Ñ
r
X , Ñ

p
X) and M(X ′) = (R̃X′ , Ñ

r
X′ , Ñ

p
X′).

For a given vector r ∈ RS×A,

P
(
∀(s, a), R̃X(s, a) = rs,a | X

)

P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

) =
∏

s,a

P
(
Y1,X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} − rs,a | X

)

P
(
Y1,X′(s, a) =

∑H
h=1 r

′
h1{s′h=s,a′h=a} − rs,a | X ′

) (103)

since the Gaussian distribution is symmetric. Then,

∏

s,a

P
(
Y1,X(s, a) =

∑H
h=1 rh1{sh=s,ah=a} − rs,a | X

)

P
(
Y1,X′(s, a) =

∑H
h=1 r

′
h1{s′h=s,a′h=a} − rs,a | X ′

)

=
∏

s,a

exp




(∑H
h=1 rh1{sh=s,ah=a} − rs,a

)2

−
(∑H

h=1 r
′
h1{s′h=s,a′h=a} − rs,a

)2

2σ2




(104)
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But, developping the squared term, we get:
(

H∑

h=1

rh1{sh=s,ah=a} − rs,a
)2

=

(
H∑

h=1

rh1{sh=s,ah=a} −
H∑

h=1

r′h1{s′h=s,a′h=a} +

H∑

h=1

r′h1{s′h=s,a′h=a} − rs,a
)2

=

(
H∑

h=1

rh1{sh=s,ah=a} −
H∑

h=1

r′h1{s′h=s,a′h=a}

)2

+

(
H∑

h=1

r′h1{s′h=s,a′h=a} − rs,a
)2

+ 2

(
H∑

h=1

rh1{sh=s,ah=a} −
H∑

h=1

r′h1{s′h=s,a′h=a}

)(
H∑

h=1

r′h1{s′h=s,a′h=a} − rs,a
)

Hence developping the squared term we get:

(104) =
∏

s,a

exp

(
1

2σ2

((
H∑

h=1

rh1{sh=s,ah=a} −
H∑

h=1

r′h1{s′h=s,a′h=a}

)2

− 2

(
H∑

h=1

rh1{sh=s,ah=a} − r′h1{s′h=s,a′h=a}

)(
H∑

h=1

r′h1{s′h=s,a′h=a} − rs,a
)))

.

(105)

But,
∑
s,a

(∑H
h=1 rh1{sh=s,ah=a} −

∑H
h=1 r

′
h1{s′h=s,a′h=a}

)2

≤ 2H2 because for each step h, rh ∈ [0, 1]. By the

same reasonning, we have
∑
s,a

∣∣∣
(∑H

h=1 rh1{sh=s,ah=a} − r′h1{s′h=s,a′h=a}
)∑H

h=1 r
′
h1{s′h=s,a′h=a}

∣∣∣ ≤ H2. There-

fore, we have:

(104) ≤ exp

(
1

2σ2

(
2
∑

s,a

(
H∑

h=1

rh1{sh=s,ah=a} − r′h1{s′h=s,a′h=a}

)
rs,a + 3H2

))

≤ exp

(
1

2σ2

(
2
√

2H

√∑

s,a

r2
s,a + 3H2

)) (106)

Therefore if ||r||2 ≤ σ2ε0
3
√

2H
− 3H

2
√

2
, Eq. (106) is bounded by exp(ε0/3). To finish, let’s partition RS×A in two

subspaces R1 =
{
x ∈ RS×A | ||x||2 ≤ c2H

3
√

2ε0
− 3H

2
√

2

}
and R2 =

{
x ∈ RS×A | ||x||2 > c2H

3
√

2ε0
− 3H

2
√

2

}
where we used

the fact that σ = cH/ε0 with c a constant to be chosen later. Then for c2 ≥ 4 ln
(

3
δ1

)
, for δ1 to be chosen later,

P (Y1,X ∈ R2) ≤ δ1 and P (Y1,X′ ∈ R2) ≤ δ1. Thus for Eq. (103):

P
(
∀(s, a), R̃X(s, a) = rs,a | X

)
= P

(
∀(s, a), R̃X(s, a) = rs,a | X

)
1{r−(

∑H
h=1 rh1{sh=s,ah=a)})s,a∈R1} (107)

+ P
(
∀(s, a), R̃X(s, a) = rs,a | X

)
1{r−(

∑H
h=1 rh1{sh=s,ah=a})s,a∈R2}

≤ exp(ε0/3)P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

)
1{r−(

∑H
h=1 rh1{sh=s,ah=a)})s,a∈R1}

(108)

+ P (Y1,X ∈ R2)

≤ exp(ε0/3)P
(
∀(s, a), R̃X′(s, a) = rs,a | X ′

)
+ δ1 (109)

We get the same results for Ñr and Ñp. Then, because (Yi,X(s, a))i≤2,(s,a)∈S×A, (ZX(s, a, s′))(s,a,s′)∈S×A×S are
independent, see Alg. 5 it holds that:

P
(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)
= P

(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)

and so,

P
(
M(X) = (r, n, n′) | X

)
= P

(
R̃X = r, Ñr

X = n, Ñp
X = n′ | X

)
(110)

= P
(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)
(111)
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Then for any two trajectories X and X ′, we have:

P
(
R̃X = r | X

)
P
(
Ñr
X = n | X

)
P
(
Ñp
X = n′ | X

)
≤
(

exp(ε0/3)P
(
R̃X′ = r | X ′

)
+ δ1

)
(112)

×
(

exp(ε0/3)P
(
Ñr
X′ = n | X ′

)
+ δ1

)
(113)

×
(

exp(ε0/3)P
(
Ñp
X′ = n′ | X ′

)
+ δ1

)
(114)

≤ exp(ε0)P
(
R̃X′ = r | X ′

)
P
(
Ñr
X′ = n | X ′

)
P
(
Ñp
X′ = n′ | X ′

)
+ 2δ1 exp (2ε0/3) (115)

+2δ2
1 exp (ε0/3) + δ3

1 (116)

Thus by choosing δ1 = δ0/8, it holds that 2δ1 exp (2ε0/3) + 2δ2
1 exp (ε0/3) + δ3

1 ≤ δ0 for ε0 ≤ 1, and so we can
conclude that the Gaussian mechanism is (ε0, δ0)-LDP.

In addition, the precision of the Gaussian mechanism is of the same order as the Laplace mechanism, that is to
say:

Proposition 5. The Gaussian mechanism, Alg. 5, with parameter ε0 > 0 and c2 ≥ 4 ln
(

24
δ0

)
for any δ0 > 0

satisfies Def. 2 for any δ > 0 and k ∈ N? with:

ck,1(ε0, δ0, δ) = ck,2(ε0, δ0, δ) = ck,4(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1) ln

(
6SA

δ

)
, 1

}

ck,3(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1)S ln

(
6SA

δ

)
, 1

}

This result shows that using the Gaussian mechanism rather than the Laplace mechanism would not lead to
improved regret rate as the utilities ck,1, ck,2, ck,3, ck,4 have the same depency of S,A,H, ε0 and k . Moreover,
the Gaussian mechanism only guarantees LDP for δ > 0 whereas using the Laplace mechanism ensures that we
can guarantee LDP for δ = 0 as well.

Proof of Prop. 5: Following the same steps as in the proof of Prop 2, we have that at the beginning of episode k
with probability at least 1− δ

3SA :

∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ =

∣∣∣∣∣
∑

l<k

(R̃Xl
(s, a)−RXl

(s, a))

∣∣∣∣∣ (117)

=

∣∣∣∣∣
∑

l<k

(
Y1,Xl

(s, a) +

H∑

h=1

rh1{sl,h=s,al,h=a}

)
−
∑

l<k

H∑

h=1

rh1{sl,h=s,al,h=a}

∣∣∣∣∣ (118)

=

∣∣∣∣∣
k−1∑

l=1

Y1,Xl
(s, a)

∣∣∣∣∣ ≤ σ
√

2(k − 1) ln

(
6SA

δ

)
(119)

thanks to Chernoff bounds. The same result follows for Ñr and Ñp. Therefore, the Gaussian mechanism satisfies
Def. 2 with ck,1(ε0, δ0, δ) = ck,2(ε0, δ0, δ) = ck,4(ε0, δ0, δ) with:

ck,1(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1) ln

(
6SA

δ

)
, 1

}
(120)

with c > 0 and:

ck,3(ε0, δ0, δ) = max

{
cH

ε0

√
(k − 1)S ln

(
6SA

δ

)
, 1

}
(121)

where ck,3(ε0, δ0, δ) is defined as
∣∣∣
∑
s′ N

p
k (s, a, s′)−∑s‘ Ñ

p
k (s, a, s′)

∣∣∣ ≤ ck,3(ε0, δ0, δ).
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E.2 Bernoulli Mechanism:

The second alternative mechanism we consider is the Bernoulli mechanism. In general, this mechanism is used
for discrete data like indicator functions (1{sh=s,ah=a})h,s,a. We therefore use this mechanism to privatize the
number of visits of a state-action pair and state-action-next-state tuple for each trajectory. With the assumption
that reward are supported in [0, 1], we can also use this mechanism for privatizing the cumulative reward of a
given trajectory. Contrary to previous mechanisms, the output of the Bernoulli mechanism is three vectors, two
of size H × S ×A, and the last one of size (H − 1)× S ×A× S. We slightly modify the requirements of Def. 2 by
changing the size of the output of the privacy preserving mechanism. We summarize the mechanism in Alg. 6.

Algorithm 6: Bernoulli mechanism for LDP

Input: Trajectory: X = {(sh, ah, rh) | h ≤ H}, Privacy Parameter: ε0
1 for (s, a) ∈ S ×A do
2 for h = 1, . . . , H do

3 Sample Y1,X(h, s, a) ∼ Ber
(

exp(ε0)−1
exp(ε0)+1

rh1{sh=s,ah=a} + 1
exp(ε0)+1

)
4 R̃X(h, s, a) = exp(ε0)+1

exp(ε0)−1

(
Y1,X(h, s, a)− 1

exp(ε0)+1

)
5 Sample ñrX(h, s, a) ∼ Ber

(
exp(ε0)−1
exp(ε0)+1

1{sh=s,ah=a} + 1
exp(ε0)+1

)
6 Ñr

X(h, s, a) = exp(ε0)+1
exp(ε0)−1

(
ñrX(h, s, a)− 1

exp(ε0)+1

)
7 if h < H − 1 then
8 for s′ ∈ S do

9 Sample ñpX(h, s, a, s′) ∼ Ber
(

exp(ε0)−1
exp(ε0)+1

1{sh=s,ah=a,sh+1=s
′} + 1

exp(ε0)+1

)
10 Ñp

X(h, s, a, s′) = exp(ε0)+1
exp(ε0)−1

(
ñpX(h, s, a, s′)− 1

exp(ε0)+1

)
Output: (R̃X , Ñ

r
X , Ñ

p
X) ∈

{
−1

exp(ε0)−1
, exp(ε0)
exp(ε0)−1

}HSA
×
{

−1
exp(ε0)−1

, exp(ε0)
exp(ε0)−1

}HSA
×
{

−1
exp(ε0)−1

, exp(ε0)
exp(ε0)−1

}(H−1)SAS

Just as for the Gaussian mechanism, we show that Alg. 6 satisfies Def. 2. We begin by showing that this
mechanism satisfies (ε0, 0)-LDP for any ε0 > 0.

Proposition 6. For any ε > 0, the Bernoulli mechanism, Alg. 6, with parameter ε0 = ε/6H is (ε, 0)-LDP.

Proof of Prop. 6: Just as in the proof of Prop. 4 and Prop. 2, let’s consider two trajectories X = {(sh, ah, rh) |
h ≤ H} and X ′ = {(s′h, a′h, r′h) | h ≤ H} and also denote the output of the private randomizer M by

M(X) = (R̃X , Ñ
r
X , Ñ

p
X) and M(X ′) = (R̃X′ , Ñ

r
X′ , Ñ

p
X′).

For a given r ∈
{

−1
exp(ε0)−1 ,

exp(ε0)
exp(ε0)−1

}HSA
, we have that:

P
(
∀(h, s, a), R̃X(h, s, a) = rh,s,a | X

)

P
(
∀(h, s, a), R̃X′(h, s, a) = rh,s,a | X ′

) =
∏

h,s,a




exp(ε0)−1
exp(ε0)+1rh1{sh=s,ah=a} + 1

exp(ε0)+1

exp(ε0)−1
exp(ε0)+1r

′
h1{s′h=s,a′h=a} + 1

exp(ε0)+1



yrh,s,a

×

×




1−
(

exp(ε0)−1
exp(ε0)+1rh1{sh=s,ah=a} + 1

exp(ε0)+1

)

1−
(

exp(ε0)−1
exp(ε0)+1r

′
h1{s′h=s,a′h=a} + 1

exp(ε0)+1

)




1−yrh,s,a
(122)

where for every (h, s, a) ∈ H × S × A, we define yrh,s,a = exp(ε0)−1
exp(ε0)+1r + 1

exp(ε0)+1 belongs to {0, 1} because

r ∈
{

−1
exp(ε0)−1 ,

exp(ε0)
exp(ε0)−1

}HSA
. Eq. (122) can be rewritten as:

(122) =
∏

h,s,a

(
(exp(ε0)− 1)rh1{sh=s,ah=a} + 1

(exp(ε0)− 1)r′h1{s′h=s,a′h=a} + 1

)yrh,s,a
(

exp(ε0)− (exp(ε0)− 1)rh1{sh=s,ah=a}
exp(ε0)− (exp(ε0)− 1)r′h1{s′h=s,a′h=a}

)1−yrh,s,a

(123)
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Then for a given (h, s, a), because rh ∈ [0, 1] we have:

(exp(ε0)− 1)rh1{sh=s,ah=a} + 1

(exp(ε0)− 1)r′h1{s′h=s,a′h=a} + 1
≤





exp(ε0) if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 1

1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 0

exp(ε0) if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0

1 if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1

(124)

exp(ε0)− (exp(ε0)− 1)rh1{sh=s,ah=a}
exp(ε0)− (exp(ε0)− 1)r′h1{s′h=s,a′h=a}

≤





exp(ε0) if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 1

1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a} = 0

1 if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0

exp(ε0) if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1

(125)

Therefore, we can simplify each term in (123) by:

(exp(ε0)− 1)rh1{sh=s,ah=a} + 1

(exp(ε0)− 1)r′h1{s′h=s,a′h=a} + 1
≤ exp

(
ε0

(
1{sh=s,ah=a} + 1{s′h=s,a′h=a}

))

exp(ε0)− (exp(ε0)− 1)rh1{sh=s,ah=a}
exp(ε0)− (exp(ε0)− 1)r′h1{s′h=s,a′h=a}

≤ exp
(
ε0

(
1{sh=s,ah=a} + 1{s′h=s,a′h=a}

))

Hence, using the two inequalities above:

(123) ≤
∏

h,s,a

exp
(
yrh,s,aε0

(
1{sh=s,ah=a} + 1{s′h=s,a′h=a}

)
+ (1− yrh,s,a)ε0

(
1{s′h=s,a′h=a} + 1{sh=s,ah=a}

))

=
∏

h,s,a

exp
(
ε0

(
1{sh=s,ah=a} + 1{s′h=s,a′h=a}

))

= exp (2ε0H)

In addition, let’s consider m ∈
{
−1

eε0−1 ,
eε0

eε0−1

}H×S×A
and y = exp(ε0)−1

exp(ε0)+1m+ 1
exp(ε0)+1 ∈ {0, 1}, we then have that:

P
(
∀(h, s, a), Ñr

X(h, s, a) = mh,s,a | X
)

P
(
∀(h, s, a), Ñr

X′(h, s, a) = mh,s,a | X ′
) =

∏

h,s,a




exp(ε0)−1
exp(ε0)+11{sh=s,ah=a} + 1

exp(ε0)+1

exp(ε0)−1
exp(ε0)+11{s′h=s,a′h=a} + 1

exp(ε0)+1



yh,s,a

×

×




1−
(

exp(ε0)−1
exp(ε0)+11{sh=s,ah=a} + 1

exp(ε0)+1

)

1−
(

exp(ε0)−1
exp(ε0)+11{s′h=s,a′h=a} + 1

exp(ε0)+1

)




1−yh,s,a
(126)

Which can be rewritten as:

P
(
∀(h, s, a), Ñr

X(h, s, a) = mh,s,a | X
)

P
(
∀(h, s, a), Ñr

X′(h, s, a) = mh,s,a | X ′
) =

∏

h,s,a

(
(exp(ε0)− 1)1{sh=s,ah=a} + 1

(exp(ε0)− 1)1{s′h=s,a′h=a} + 1

)yh,s,a

×

×
(

exp(ε0)− (exp(ε0)− 1)1{sh=s,ah=a}
exp(ε0)− (exp(ε0)− 1)1{s′h=s,a′h=a}

)1−yh,s,a

(127)

Thus for a given (h, s, a):

(exp(ε0)− 1)1{sh=s,ah=a} + 1

(exp(ε0)− 1)1{s′h=s,a′h=a} + 1
=





1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a}
exp(ε0) if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0

exp(−ε0) if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1
(128)

exp(ε0)− (exp(ε0)− 1)1{sh=s,ah=a}
exp(ε0)− (exp(ε0)− 1)1{s′h=s,a′h=a}

=





1 if 1{sh=s,ah=a} = 1{s′h=s,a′h=a}
exp(−ε0) if 1{sh=s,ah=a} = 1 and 1{s′h=s,a′h=a} = 0

exp(ε0) if 1{sh=s,ah=a} = 0 and 1{s′h=s,a′h=a} = 1
(129)
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Therefore, here again we can simplify each term in (127) by:

(exp(ε0)− 1)1{sh=s,ah=a} + 1

(exp(ε0)− 1)1{s′h=s,a′h=a} + 1
≤ exp

(
ε0

(
1{sh=s,ah=a} − 1{s′h=s,a′h=a}

))

exp(ε0)− (exp(ε0)− 1)1{sh=s,ah=a}
exp(ε0)− (exp(ε0)− 1)1{s′h=s,a′h=a}

≤ exp
(
ε0

(
1{sh=s,ah=a} − 1{s′h=s,a′h=a}

))

Therefore:

(127) =
∏

h,s,a

exp
(
yh,s,aε0

(
1{sh=s,ah=a} − 1{s′h=s,a′h=a}

)
+ (1− yh,s,a)ε0

(
1{s′h=s,a′h=a} − 1{sh=s,ah=a}

))

=
∏

h,s,a

exp
(

(2yh,s,a − 1)ε0

(
1{sh=s,ah=a} − 1{s′h=s,a′h=a}

))

≤ exp (2ε0H)

Using the same reasonning we have that for any m′ ∈
{
− 1

exp(ε0)−1 ,
exp(ε0)

exp(ε0)−1

}(H−1)×S×A×S
:

P
(
∀(h, s, a, s′), Ñp

X(h, s, a, s′) = m′h,s,a,s′ | X
)

P
(
∀(h, s, a, s′), Ñp

X′(h, s, a, s
′) = m′h,s,a,s′ | X ′

) ≤ exp(2ε0H) (130)

We conclude the proof the same way as the proof of Prop. 3.

In addition, the precision ck,1, ck,2, ck,3 and ck,4 of the Bernoulli mechanism are still of order
√
k just as the

Gaussian and Laplace mechanisms. From the below proposition, we see that although the dependency on S is
worst than with the Laplace or Gaussian mechanisms, the dependence on ε0 is better for small ε0. Indeed, we
have an additional factor S for ck,3 compared to the other mechanisms but those terms scale with 1/(exp(ε0)− 1)
instead of the worse dependency 1/ε.

Proposition 7. The Bernoulli mechanism, Alg. 6, with parameter ε0 > 0 satisfies Def. 2 for any δ > 0 and
k ∈ N? with:

ck,1(ε0, δ) = ck,2(ε0, δ) = max

{
1,

2 exp(ε0)− 1

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4SA

δ

)}

ck,3(ε0, δ) = max

{
1,
S(2 exp(ε0)− 1)

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4SA

δ

)}

ck,4(ε0, δ) = max

{
1,

2 exp(ε0)− 1

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4S2A

δ

)}

Proof of Prop. 7: Let’s consider a given state-action-next state tuple, (s, a, s′), then when summing over h:

∣∣∣∣∣
H∑

h=1

Ñr
k (h, s, a)−

∑

l<k

H∑

h=1

1{sl,h=s,al,h=a}

∣∣∣∣∣ =

∣∣∣∣∣
H∑

h=1

∑

l<k

Ñr
Xl

(h, s, a)− 1{sl,h=s,al,h=a}

∣∣∣∣∣ (131)

We now construct a filtration (Fk,h)k,h such that (Ñr
Xl

(h, s, a) − 1{sl,h=s,al,h=a})l,h is a Martingale Difference
Sequence. For an episode k and step h, define Fk,h = σ({(sl,j , al,j , rl,j)j≤H ,M((sl,j , al,j , rl,j)j≤H)} | l <
k} ∪ {(sk,j , ak,j , rk,j)j≤h}) to be the filtration that contains the history before episode k. Then 1{sk,h=s,ak,h=a} is
Fk,h-measurable and thus we have:

E
(
Ñr
Xk

(h, s, a)− 1{sk,h=s,ak,h=a} | Fk,h
)

=
exp(ε0) + 1

exp(ε0)− 1

(
E (ñXk

(h, s, a) | Fk,h)− 1

exp(ε0) + 1

)

−1{sk,h=s,ak,h=a} = 0



Manuscript under review by AISTATS 2021

where ñXk
(h, s, a) is a Bernoulli random variable generated by Alg. 6 for each step h, state s, action a and

trajectory Xk. And
∣∣∣Ñr

Xk
(h, s, a)− 1{sk,h=s,ak,h=a}

∣∣∣ ≤ 2 exp(ε0)−1
exp(ε0)−1 . Then thanks to Azuma-Hoeffding inequality

we have that with probability at least 1− δ/(4SA):

∣∣∣∣∣
H∑

h=1

Ñr
k (h, s, a)−

∑

l<k

H∑

h=1

1{sl,h=s,al,h=a}

∣∣∣∣∣ ≤
2 exp(ε0)− 1

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4SA

δ

)
(132)

With the same reasonning, we have with probability at least 1− δ/4S2A:

∣∣∣∣∣
H∑

h=1

Ñp
k (h, s, a, s′)−

∑

l<k

H−1∑

h=1

1{sl,h=s,al,h=a,sl,h+1=s′}

∣∣∣∣∣ ≤
2 exp(ε0)− 1

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4S2A

δ

)
(133)

Also, we have:

∣∣∣∣∣
H∑

h=1

R̃rk(h, s, a)−
∑

l<k

H∑

h=1

rh1{sl,h=s,al,h=a}

∣∣∣∣∣ ≤
2 exp(ε0)− 1

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4SA

δ

)
(134)

with R̃rk(h, s, a) =
∑
l<k R̃Xl

. Finally, with probability at least 1− δ/4SA:

∣∣∣∣∣
H∑

h=1

∑

s′

Ñp
k (h, s, a, s′)−

∑

s′

∑

l<k

H−1∑

h=1

1{sl,h=s,al,h=a,sl,h+1=s′}

∣∣∣∣∣ ≤
S(2eε0 − 1)

eε0 − 1

√
(k − 1)H

2
ln

(
4SA

δ

)
(135)

Compared to bounds, we derived for previous mechanisms there is an additional factor
√
S. This comes from

using a triangular inequality instead of using concntration inequalities like in previous mechanisms. Then thanks
to a union bound over the state-action pair and the state-action-next state tuple we have that the Bernoulli
mechanism satisfies Def. 2 with:

ck,1(ε0, δ) = ck,2(ε0, δ) = max

{
1,

2 exp(ε0)− 1

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4SA

δ

)}
(136)

ck,3(ε0, δ) = max

{
1,
S(2 exp(ε0)− 1)

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4SA

δ

)}
, (137)

ck,4(ε0, δ) = max

{
1,

2 exp(ε0)− 1

exp(ε0)− 1

√
(k − 1)H

2
ln

(
4S2A

δ

)}
(138)
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F Additional Experiment

In this appendix, we explore a second experiment, in which we use the same the RandomMDP environment
with the same parameters as in Sec. 6 in order to investigate the effect of differential privacy on the learning
process. For this, we run the UCB-VI algorithm for K = 103 episodes and collect the aggregate noisy statistics,
(R̃K(s, a))(s,a)∈S×A, (Ñr

K(s, a))(s,a)∈S×A and (Ñp
K(s, a, s′))(s,a,s′)∈S×A×S that have been generated by using the

Laplace mechanism for each episode. We collect those statistics, 103 times. We compare the histogram of
those noisy statistics to that of the noiseless statistics used by UCB-VI in Fig. 3. This demonstrates that, as
expected, there is much more variation in the statistics provided by the private mechanism. In Fig. 4, we applied
the Laplace mechanism to two different random trajectories, X and X ′. We can see that, after applying the
Laplace mechanism, the two distinct trajectories become almost indistinguishable. These two figures combined
demonstrate the difficulty of learning from locally differentially private data.
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