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Abstract

Recently, the substantially improved performance of deep reinforcement learning1

models at the research level has motivated the employment of these models in real-2

world domains such as health care, self-driving cars, robotics, and recommender3

systems. However, due to the concerns stemmed from the sensitive nature of some4

of these domains to the privacy leakage and lack of enough research in this field,5

their application has been limited. In particular, while several studies have assessed6

the privacy of supervised models, the semi-supervised sequential decision making7

algorithms have not been studied much in this regard. Here, we propose a generic8

attack framework to test the vulnerabilities of two established deep reinforcement9

learning algorithms to membership inference attacks. We perform the attack in10

three high-dimensional continuous locomotion tasks and show that our proposed11

attack model can predict the vulnerability of the reinforcement learning models12

with high precision and accuracy.13

1 Introduction14

Despite the recent advances in the performance of deep reinforcement learning (RL) algorithms15

in complex domains, these models still struggle to generalize when they move to a new complex16

environment [9, 5, 17]. There exists a rich body of literature in machine learning that addresses17

how lack of generalizability leads to potential privacy breaches [15, 6]. However, the focus on RL18

algorithms in this regard has been minimal. A recent study on the privacy of deep RL models by Pan19

et al. [8] shows that deep RL models potentially breach privacy. In particular, their attack system can20

infer the floor plans in grid world navigation tasks as well as the transition dynamics of continuous21

control environments. However, to the best of our knowledge, there has been no empirical study on22

the potential leakage of collected data employed in training RL agents. In this paper, we introduce the23

first demonstration of a white-box membership inference attack framework against deep RL agents.24

In particular, we show that our proposed framework can recognize the membership of a particular25

data-point (in the form of a trajectory) in a private training set used to train the target deep RL model.26

To show the effectiveness of our proposed attack framework, we run our proposed attack against27

two state-of-the-art deep RL models in three high-dimensional continuous control tasks for different28

trajectory lengths. Our attack framework infers the membership of the training trajectories with29

considerably high accuracy ranging between 85% to 90%, while the baseline random guess accuracy30

varies between 44% to 55%. Our results show that the two deep RL models breach the privacy of31

the training trajectories even in very high-dimensional domains with high variance in the model32

predictions.33

Problem statement: The off-policy algorithms we have used in this study are Deep Deterministic34

Policy Gradients (DDPG) [7] and Soft Actor Critic (SAC) [4]. The deep RL agent has no prior35
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knowledge of the underlying environment dynamics, and through interaction with the environment,36

uses exploration policy πb to collect training samples from the environment and learns the target37

policy πa. We assume that the attacker has the same level of access to the environment as that of the38

target model. The attacker does not know the private seed number used to train the target model and39

has only query access to the trained policy πa. The input to the attack model is composed of: 1) a40

trajectory from the target model private training set, and 2) a test trajectory generated by the trained41

policy πa. The attacker must subsequently determine if the training and the test trajectories belong42

to the same deep RL agent. The length of input trajectories may vary. A trajectory is a sequence of43

temporally correlated tuples. Each tuple within a trajectory is in the form of 〈state, action, reward〉,44

and the dimensionality of state and action depend on the environment with which the agent interacts.45

2 Related Work46

There exists an extensive body of literature on membership inference attacks against supervised47

machine learning models [12, 11, 16]. For the first time, Shokri et al. [12] introduced shadow model48

training technique and performed membership inference attack against a deep classifier. Shadow49

model training is an intuitive approach to designing membership inference attacks by replicating50

the behavior of the target model through training shadow models on data sets drawn from the same51

distribution as that of the private data set used to train the target model. The use of shadow model52

training was subsequently adopted by other follow-up studies [16] [11] [10]. Salem et al. [11]53

proposed and performed successful attack strategies based on shadow-model training. Yoem et al.54

[16] showed that overfitting is sufficient for the adversary to perform membership inference attacks55

against several machine learning models, such as regression and deep convolutional neural networks56

(CNNs).57

In the field of reinforcement learning, Pan et al. [8] proposed a black-box attack framework against58

deep RL algorithms to infer the transition model used to train the target policy. The proposed attacks59

study the effect of over-fitting on revealing information regarding the agent’s training environment60

as well as the model parameters. However, there is no prior work in the context of deep RL that61

addresses the problem of membership inference at a microscopic level, where the attacker infers the62

membership of a particular data point in the training set of a trained policy. Our work is the first63

implementation of a membership inference attack in a semi-supervised setting where the target model64

is trained on the environment accessible to the adversary with the same query access level as that of65

the target model.66

3 Methods67

Figure 1 depicts the general architecture of our proposed membership inference attack framework68

against an off-policy deep RL agent. The main components include: 1) Private Target Trainer- It69

uses private seed number, takes as input the number of training time-steps, and privately trains the70

target model in interaction with the shared environment. The adversary subsequently employ the71

trained target model to produce test trajectories. 2) Non-Private Shadow Trainer- It takes as input the72

number of shadow models n and the number of training time-steps, and subsequently generates n73

independent random seeds to train n independent shadow models as well as n independent training74

and test data sets. The Shadow Trainer has the same access level to the environment as the Target75

Trainer. 3) Data Formatter- It pairs the train and test trajectories uniformly at random and labels76

them as ’matched’ or ’mismatched’ if the trajectories belong to the same model or not, respectively.77

4) Attack Trainer- It trains a classifier that takes as input pairs of trajectories generated by the shadow78

models and assigns to that the probability that trajectories belong to the same trained model.79

The shadow and target trainers use independent random initialization seeds to ensure independent80

training sets. During the training phase, the training trajectories are collected by each model. The81

collected trajectories are passed into memory for policy training. In the context of reinforcement82

learning, each trajectory represents a data-point, and thus the input type for the attack model is in the83

form of trajectory pairs. We use a probabilistic classifier [3] for the attack model, which output the84

matching probability between the trajectories. Employing a probabilistic classifier complicates the85

inference task from the attacker’s point of view since the adversary requires to map the probabilistic86

quantity to a binary outcome (i.e. match/mismatch). We resolve this challenge by defining a set87

of threshold 0 < β<1, above which the probability is mapped to 1, and 0 otherwise. In order to88
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Figure 1: PrivAttack architecture

tune the threshold, we subsequently use the method of Geometric Mean Relative Absolute Error89

(GMRAE) with respect to a given choice of threshold 0 < β<1. Finally, we adopt the following90

standard performance metrics used in the classification literature [13] to evaluate the performance91

of our proposed attack against deep RL agents: 1) prediction accuracy or attack accuracy, which92

captures the overall performance of the attack classifier; 2) precision, which captures the level of93

agreement between the true labels and the members inferred by the attack classifier. In other words, it94

shows the fraction of the input pairs classified as matching pairs that are indeed coming from the same95

model; 3) recall or sensitivity, which captures the performance of attack classifier in identifying the96

true members, or in other words, the fraction of training pairs that the attack classifier can correctly97

infer as matching pairs.98

4 Experiments99

We assess the privacy of the two established deep RL models Deep Deterministic Policy Gradients100

(DDPG) [7] and Soft Actor-Critic (SAC) [4], as well as the performance of the PrivAttack framework.101

We train the deep RL agents on three high-dimensional continuous control MuJoCo tasks [14] from102

OpenAI Gym OpenAI GYM [2] Hopper-v2, Half Cheetah-v2 and Humanoid-v2. SAC and DDPG103

implementation used for the experiments are forked from OpenAI spinning-up project [1] (Refer to104

figure 2 for the benchmark results in these three environments.) We design experimental scenarios to105

observe the impact of the epoch length on the vulnerabilities of the deep RL models to the membership106

inference attack. We further study the performance of our proposed attack model using the three107

standard metrics accuracy, precision, and recall.108

To capture the impact of trajectory length on the vulnerability of the deep RL models to membership109

inference attacks, we train multiple sets of shadow/target models with three different trajectory110

lengths 50, 500, and 1000 time steps. We train the classifier using 2 to 20 shadow models at a time,111

with the acceptance threshold ranging from 0.1 to 0.9, and the attack classifier training set size up to112

10000 labelled trajectory pairs. The obtained results (Table 1) show that in general, longer trajectory113

lengths lead to less private algorithms. Note that a longer trajectory carries more information about114

an individual participating in the data set, which consequently leads to more vulnerability of the115

individual to membership inference attacks. However, despite the general increasing trend in attack116

accuracy upon increasing the trajectory length, there are still some exceptions. For instance, while117

increasing the trajectory length for the SAC agent in Hopper leads to up to 8% increase in the118

membership inference accuracy, in Half-Cheetah, we see a 5% decrease. These exceptions show that119
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Figure 2: Benchmark results on three high-dimensional locomotion tasks from OpenAI Gym environ-
ment. The results are averaged over 5 independent runs with 5 random seeds.

there may be other factors apart from the trajectory length that affect the privacy level of these deep120

RL algorithms, which can be an interesting direction for the future studies.121

Table 1: Tabular representation of membership inference attack performance as a function of trajectory
length and total number of steps. The experiments are conducted with 5 shadow models and an
acceptance threshold of 0.9.

5 Conclusion122

The lack of studies that examine the vulnerability of deep RL models against potential membership123

inference attacks has turned to a real obstacle to such models’ industrial application. To address124

this challenge, in this paper we propose a generic membership inference attack framework. We125

demonstrate the performance of our attack framework in different epoch-length regimes. Moreover,126

our attack framework reveals the substantial vulnerability of two established deep reinforcement127

learning models to the white-box membership inference attack. Finally, our study demonstrates128

the impact of trajectory size on the vulnerability of the deep RL models to membership inference129

attacks. This pivotal factor should be considered in the design of privacy-preserving deep RL models.130

Investigating the impact of other variables such as task dimensionality and algorithmic stability on131

the privacy of the deep RL models as well as the attack performance is an interesting future direction.132
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