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Abstract

We propose a new framework, which aims to enable large-scale privacy-preserving
machine learning (PPML) in the cloud. In this extended abstract, we discuss the
integration of Apache Spark and fully homomorphic encryption (FHE), thus the
name SparkFHE. The SparkFHE framework enables Spark to perform computa-
tions on encrypted data without requiring the secret key hence preserving user
data privacy, and scales up homomorphic algorithms for larger datasets through
efficient cluster programming. We present the architecture design, programming
abstractions, and mappings of applications such as private set intersection and
logistic regression, into the dataflow model of Spark. Furthermore, we discuss
preliminary results to validate our designs.

1 Introduction
Cloud computing is becoming indispensable for building machine learning pipelines at scale. At the
core of cloud computing is distributed data processing frameworks partitioning large volume of user
data and orchestrating task allocation to achieve parallelization in a single-program-multiple-data
(SPMD) manner. Recent data processing frameworks, such as Apache Spark [1], Apache Flink [2],
and others [3, 4, 5], adopt the distributed dataflow model to maximize in-memory processing and
optimize task allocation, reducing significant data movement overhead and data processing time.

However, many ML tasks require sensitive user data, for example genome-wide association study
(GWAS), and support for PPML on the current cloud infrastructures is lacking. We propose a new
framework — SparkFHE, to address the needs of PPML in the cloud. SparkFHE integrates fully
homomorphic encryption (FHE) with Spark so that Spark can perform computations on encrypted data
without requiring the secret keys. This integration brings new capability to Spark users who might
want to develop PPML algorithms and benefit from the highly efficient data processing environment.
In addition to our contribution in the architecture design, we discuss the programming abstractions for
easing the development PPML algorithms in the Spark context. To validate our designs, we present
case-study of mapping two example applications into the dataflow model using Spark’s resilient
distributed datasets (RDD) [6], and discuss some preliminary evaluation results.

2 System Architecture and Programming Abstractions
The two main goals when designing SparkFHE are to enable Spark to perform homomorphic
computations on encrypted data, and to leverage the efficiency of parallelized data processing of
Spark to scale homomorphic computations for large datasets. While achieving these two goals, we
develop programming abstraction to ease the development of PPML algorithms for Spark users
who are cryptography novice. Figure 1 illustrates the overall architecture of SparkFHE and its
components for FHE support, parameter setup, experimentation, and a validation setup using off-the-
shelf cloud computing software. The core module is libSparkFHE, which is a C++ shared library.
This module defines data types that incorporate various FHE libraries such as SEAL [7] and HElib [8]
into SparkFHE and implements primitive functions and homomorphic algorithms to support our
programming abstraction. Functionalities provided by this module is exposed to the Spark users
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through two API modules for standard Spark and PySpark. We have developed our programming
abstraction as a third-party plugin for Spark. Our current prototype supports basic linear algebra
over vectors or matrices of ciphertexts in either batching or non-batching mode. Using these basic
linear algebra operations, we have developed simple ML algorithms such as logistic regression. We
have developed a prototype of SparkFHE based on this system architecture, integrated with the latest
version of Spark core, and built an experimentation pipeline using Mesos for resource management
and Hadoop as a distributed filesystem. We have tested our deployment of the SparkFHE framework
on Cloudlab.us cluster.

One of the main contributions of SparkFHE is the new programming abstraction. The programming
abstraction hides the complexity of the underlying homomorphic operations. We have explored the
feasibility and efficiency of programming abstraction at three different levels, as shown in Figure 2.
When there is no abstraction, our library and API expose homomorphic primitive operations such
as addition and multiplication to Spark users. Spark users have to develop their PPML algorithms
using a combination of small lambda functions, as illustrated in Listing 1. The biggest concern
is the overhead of transferring function calls between programming languages. Every call to the
homomorphic primitive operations requires transferring the call as well as data to the C++ shared
library and then to the corresponding FHE library such as SEAL or HElib. This transfer overhead is
substantial, as observed in our experimental results (see Supplement) that compare the performance of
different programming abstractions. Of course we can develop a function in our C++ library, thus the
transferring of function calls is closer to the FHE libraries. Although this approach is straightforward,
this design does not fully leverage the functionalities provided by Spark; for example, the abstractions
over RDD, dataframe, and dataset. As a result, these two partial integration methods fail to fully
leverage Spark to parallelize homomorphic computations over large ciphertexts. To reduce the
transferring overhead and ease the development for Spark users, we have developed a plugin module
(see Figure 1) that extends the capability of Spark and fully integrates FHE functionalities provided
by our library and the underlying FHE libraries into Spark. As a result of this integration, the task of
computing dot-product of two vectors of ciphertexts can be rewritten using the transformer design
pattern. This design pattern is also used by many builtin ML algorithms in the Spark’s MLlib module.

3 Modeling of Algorithms as Dataflow Graphs
Another important aspect of fully integrating Spark with FHE is to leverage Spark’s efficient cluster
computing to optimize homomorphic computations, thus reduce the evaluation time. This idea
goes beyond simply parallelizing Spark jobs on multiple computing nodes. In Spark, the dataflow
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Listing 1: Calculating dot-product from two vectors of ciphertexts without abstraction.
JavaRDD< C i p h e r t e x t > p r o d u c t _ r d d = c t x t s _ r d d . map ( t u p l e −> {

r e t u r n SparkFHE . g e t I n s t a n c e ( ) . f h e _ m u l t i p l y ( t u p l e . _1 ( ) , t u p l e . _2 ( ) ) ) ;
} ) ;

C i p h e r t e x t r e s u l t = p r o d u c t _ r d d . r e d u c e ( ( x , y ) −> {
r e t u r n SparkFHE . g e t I n s t a n c e ( ) . f he_add ( x , y ) ;

} ) ;

Listing 2: Transforming a vector of ciphertexts using an integrated function (dot-product).
JavaRDD< C t x t V e c t o r > d a t a = j s c . p a r a l l e l i z e ( A r r a ys . a s L i s t (

C t x t V e c t o r s . dense ( c t x t 1 , c t x t 2 , c t x t 3 )
) ) ;
C t x t V e c t o r t r a n s f o r m a t i o n V e c t o r = C t x t V e c t o r s . dense ( c tx tA , c tx tB , c t x t C ) ;
D o t P r o d u c t dp = new D o t P r o d u c t ( t r a n s f o r m a t i o n V e c t o r ) ;
JavaRDD< C t x t V e c t o r > r e s u l t = dp . t r a n s f o r m ( d a t a ) ;

model in the form of a directed acyclic graph (DAG) provides important metadata for a scheduler to
optimize task allocation. For example, Spark uses this DAG to identify tasks that can be combined
together in its staging process. Tasks bundled together in a stage are executed on a worker fully
utilizing in-memory processing, hence avoiding data movement overhead. As an integral part of the
development of SparkFHE, we have explored the feasibility of mapping algorithms into dataflow
model. Here, we present two example FHE algorithms: private set intersection and private evaluation
of logistic regression.

Private set intersection (PSI) [9] is an algorithm for securely determining a common subset between
two datasets without revealing other information. Through SparkFHE, Spark users are able to
represent this algorithm as a dataflow graph that can be directly implemented as a sequence of
MapReduce functions in the RDD. Figures 3a and 3b illustrate the pseudocode and dataflow diagram
for PSI. In order to implement this, first the the dataset X and the inquiry set Y are encrypted
and stored in RDD objects containing CtxtRowMatrix and CtxtVector respectively. We
have developed prototype for these new datatypes for ciphertexts based on their plaintext version,
RowMatrix and Vector respectively, to support the mapping. Using the CtxtRowMatrix
object in RDD enables Spark users to parallelize element-wise operations by creating row-wise
partitions. After that a mapPartition is used to homomorphically subtract Y from X through
element-wise subtraction of each element yi of Y from each element in row xi of X . Reduction is
then completed to reduce the previous result to a vector representing the result for each yi in Y by
multiplying the result element-wise. In the final reduce step, each element in the final CtxtVector
is multiplied by a random number to mask unmatched results.

The second example demonstrates logistic regression [10], a common machine learning model for
predicting class association based on a set of data. Figures 3c and 3d demonstratre the pseudocode and
dataflow diagram for logistic regression. Logistic regression requires multiple iterations to complete
model training. Thus, mapping the dataflow diagram of logistic regression to the MapReduce
functions in RDD demonstrates SparkFHE support for iterative algorithms. Since we are dealing with
encrypted input data, we model this algorithm using our new datatypes for ciphertexts. The training
set X is stored in a RDD of CtxRowMatrix, and the classification vector Y is mapped to a RDD
storing CtxtVector. The weights are initialized to an encryption of zero and passed as an argument.
The first mapPartition is used to compute the dot product of the rows of X by the weights with
intermediate result u. After this in logistic regression the result is typically evaluated with the sigmoid
function to generate an associated probability. However, the sigmoid function cannot be represented
primitive algebraic functions and therefore cannot be executed homomorphically. Because of this,
we use the following polynomial approximation of the sigmoid from [10]: 0.5 + 0.197x2. This
polynomial approximation is represented in the function evalPoly. To execute evalPoly on the
previous result u, u is stored in RDD of CtxtVector, and a mapPartition is used to execute
evalPoly the RDD partitions of u. After that is completed, an intermediate result is stored in
v. Another mapPartition is used to homomorphically subtract the previous result v from Y to
realize the accuracy v′ of the current weights. After this gradient descent should be performed. This
includes using a mapPartition compute the dot product of X and v′. then the result is multiplied
with the columns of the CtxRowMatrix to generate the gradient. Then the gradient values are
added to each of the weights to complete one iteration. This process is repeated for a number of
iterations set by the user.
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for i in range(1, m) do 
    for j in range(1, n) do
        Z[i][j] ← FHE.Subtract(X[i][j], Y[i]) 
    end for
end for
for i in range(1, m) do
    R[i] ← Z[i][1]
    for j in range(2, n) do 
        R[i] ← FHE.Multiply(Z[i][j], R[i])
    end for
end for
for i in range(1, m) do
    R[i]← FHE.Multiply(R[i], γ)
end for
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(a) PSI
(b) Private Set Intersection

for iter in range(1, iterations) do
    for i in range(1, m) do 
        U[i] ← FHE.DotProd(X[i], Ω) 
        V[i] ← FHE.EvalPoly(U[i]) 
        V`[i] ← FHE.Subtract(V[i], Y[i]) 
    end for
    for j in range(1, n) do 
        ∆[j] ← FHE.DotProd(V`, X[j]) 
        ∆`[j] ← FHE.Multiply(∆[j], α)
        Ω[j] ← FHE.Add(∆`[j],Ω[j])
    end for
end for
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(c) Logistic Regression
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Figure 3: Pseudocode and mappings to the dataflow model.
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Figure 4: Speedup in SparkFHE as measured by strong and weak scaling.

4 Validation and Discussions
To validate our proposed framework, we constructed a proof-of-concept prototype, deployed our
SparkFHE framework on Cloudlab.us [11], and conducted initial experimental evaluations on systems
with Intel 10-core Xeon E5-2660, 2.60GHz, 164GB RAM, and Ubuntu 18.04.2. We investigated
the performance gain of Spark for HE algorithms in a controlled environment, avoiding network
fluctuation. Figure 4 shows the preliminary results of performance gain by SparkFHE based on
two well-known metrics in parallel computing, strong- and weak-scaling. As shown in Fig. 4b, as
the problem size grows proportionally with the number of workers, such that each worker node
processes 100 encrypted values, we observe an approximately fixed running time; hence, achieving
an acceptable weak-scaling. Figure 4a shows that for a fixed problem size of 104 encrypted values,
we observe a speedup as the number of workers increases, therefore achieving good strong-scaling.
Note, no speedup was observed for the batching version of this problem because encrypting 104

data yielded two batched ciphertexts. On the other hand, Fig. 4c illustrates the growing speedup for
batched ciphertexts as the problem size scales up to 106 and 107 encrypted values.
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Figure 5: Performance comparison of different schemes and levels of abstraction.

Supplement: Performance of programming abstractions

Our proposed SparkFHE framework provides support for computation with different HE libraries
and schemes. Here, we analyze the performance of basic HE functions (e.g., KeyGen, Encrypt,
Decrypt, Encode, Decode) and primitive HE arithmetic algorithms (Addition, Subtraction,
Multiplication). Figure 5a shows the running times for four cases with supported libraries (Microsoft
SEAL and HElib) and schemes (BFV, CKKS, BGV).

In all four cases, the key generation step is performed only once and takes around 1 second to generate
a key pair. The running time also includes the internal abstraction layer functions to store the keys on
the client’s side. The following four HE functions are also performed once, for each ciphertext, on
the client’s side before uploading the encrypted data to the cloud for evaluation. On the other hand,
the HE primitive arithmetic algorithms take place on the cloud side on two ciphertexts. Each one of
them takes around 1 millisecond to be performed in parallel within Spark.

In Fig. 5b, we inspect the data transfer overhead when using different levels of programming abstrac-
tions (Figure 2) in the SparkFHE framework. We measure the running time for homomorphically
evaluating the Dot Product function on 103 individually encrypted values with the SEAL-BFV
scheme in our framework. We observe that using function from the shared library offers approxi-
mately ×4 speedup compared with no abstraction; that is, writing the dot-product function as separate
map and reduce lambda functions (see Listing 1).
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