
twinify : A software package for differentially
private data release

Joonas Jälkö1∗, Lukas Prediger1∗, Antti Honkela2 and Samuel Kaski1,3

1 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, Aalto University, Finland

2 Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

3 Department of Computer Science, University of Manchester, United Kingdom

Abstract

Differentially private (DP) data sharing has facilitated releasing data containing
sensitive information in a privacy-preserving manner. Many of these data sharing
approaches rely on generative models learned under DP, from which a synthetic
data set is then sampled. We introduce an easy-to-use software package that al-
lows its user to define a probabilistic generative model for the data sharing task,
and automates the learning and generation process based on differentially private
probabilistic inference.

1 Introduction

Open access to data is one of the key elements in open science. However, often the most relevant
data sets contain sensitive information and thus cannot be released to public. To address this issue,
many data sharing solutions founded on the concept of differential privacy have been proposed [1, 2,
3, 4, 5, 6, 3, 7, 8, 9]. Differential privacy (DP) allows learning from the sensitive data with provable
privacy guarantees and thus is a favorable privacy notion over alternatives such as k-anonymity.

The main focus in private data sharing research has been in learning generative models under DP
from which we can generative synthetic version of the sensitive data set. In this body of work, there
has been a proposal of a DP version for many modern generative models such as GANs [10, 11] and
VAEs [7, 8]. These models are examples of general purpose generative models and can be applied to
any data set. However, there is no free lunch and the performance of any model is heavily dependent
on the data. Thus in order to share data most effectively, the data analyst should choose a model that
best describes the data and the characteristics the analyst thinks are the most important.

To allow the analyst to easily use DP data sharing with their model, we propose a software package
called twinify1. For modelling and inference purposes twinify relies on NumPyro [12], a versa-
tile probabilistic programming framework similar to Pyro [13]. NumPyro uses fast CPU and GPU
kernels for execution, which are provided by the JAX framework [14, 15]. Differentially private
training routines for NumPyro are introduced by the d3p package [16]

Our software package implements and automates the data sharing procedure to make it accessible
for a broad audience. We demonstrate the usage of twinify using a COVID-19 related data set,
and show that we can build an efficient prediction model from the synthetic data.

∗These authors contributed equally to this work
1https://github.com/DPBayes/twinify/

Preprint. Under review.

Data (X) p(X,θ)

Privacy

p(X̃ |X)
Synthetic
data (X̃)

Figure 1: Illustration of the data sharing pipeline

2 Privacy preserving data sharing

twinify is built around strong privacy guarantees from differential privacy [17, 18], which provides
statistical indistinguishability for data subjects.
Definition 2.1 (Differential privacy). A randomised algorithmM satisfies (ε, δ)-differential privacy
if for every neighbouring data sets D ∼R D′, and for all S ⊂ im(M), we have

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) + δ. (1)

Here D ∼R D′ denotes the add/remove neighbouring relation, where we get D by adding/removing
an element of D′.

twinify learns the posterior distributions of the parameters θ of a user specified probabilistic model
p(X,θ) using DP variational inference [19] and samples a synthetic data set from the posterior
predictive distribution (PPD) of the model given as

p(X̃ | X) =

∫
θ

p(X̃ | θ)p(θ | X)dθ. (2)

The privacy guarantees of the samples from PPD emerge from the post-processing immunity of DP.
For more detailed discussion of the method, see [9].

3 Data Sharing with twinify

The twinify software package is designed to make privacy-preserving generation of a synthetic
twin for any given data set an easy task. The target audience specifically includes users unfamiliar
with the details of differential privacy or probabilistic programming. To that end, twinify fully
automates the differentially private data sharing process depicted in Figure 1. It also performs addi-
tional ‘boilerplate’ tasks such as some simple preprocessing steps upon reading the data.

In this section we will go through the basic steps of how to use twinify to replicate a data set,
namely the specification of the probabilistic model p(X,θ) that will be fit to the data and the execu-
tion of the twinify command line program to perform the actual fitting and data sampling.

3.1 Defining the Model

The main task for a twinify user is to define the probabilistic model p(X,θ) that will be fit to
the data. twinify directly supports specifying models using NumPyro, and imposes only minor
constraints on the use of NumPyro’s wide variety of modelling features.

Using twinify’s Automatic Modelling To expand the audience to users with less expertise in
probabilistic modelling, twinify features an automatic modelling capability which builds a mixture
model based on a simple text file in which the user assigns distributions to features in the data set,
see Fig. 2 for an example of such a configuration file. In this model we assume independence among
features within a mixture component, and the dependence structure emerges from the differences
between mixture components. The corresponding likelihood is given in Eq. (3):

p(x | θ) =
K∑

k=1

πk

d∏
j=1

p(xj | θ(j)) (3)

2

Patient age quantile: Poisson
Leukocytes: Normal
Monocytes: Normal
Patient addmited to regular ward (1=yes , 0=no): Bernoulli
SARS-Cov-2 exam result: Bernoulli

Figure 2: Excerpt of the model.txt for an example data set containing medical data. Each line
contains the exact label of a feature column in the data table and the feature distribution assigned to
it.

Distribution Parameters Priors
Normal location µ, scale σ µ ∼ N (0, 1), σ ∼ LogNormal(0, 2)
Bernoulli logit-probability z z ∼ N (0, 1)
Categorical probabilities θ θ ∼ Dirichlet(1, . . . , 1)
Poisson rate λ λ ∼ Exp(1)

Table 1: Feature distributions available to the user in twinify’s automatic modelling capability,
their parameters and the prior distributions applied to them.

We note that the automatic modelling capability of twinify is not only addressed at non-expert
users: The general-purpose model is also useful when the user has little prior information of feature
dependencies, so that a hand-crafted model would not yield much improvement over the automatic
one. Moreover, the greater simplicity of the automatic modelling approach can be convenient for
data sets with a large number of features, where writing out a full NumPyro model can become quite
laborious.

However, if prior knowledge on dependency structure is available to an expert user, a hand-crafted
model tailored to the data is likely to result in a better fit. Additionally, note that the automatic
modelling of twinify was designed to be helpful to the user, not to be a complete solution to the
interesting field of automated modelling, and is thus currently limited to the small set of feature
distributions shown in Table 1. The table also shows the prior distributions twinify uses for the
parameters of the feature distributions.

Missing values As an additional consideration for modelling, real data is often incomplete and
missing values might occur for a multitude of reasons, for example due to scarcity in measuring re-
sources. Simply removing instances that contain even one missing value might remove vast amounts
of data and skew the probabilistic model to not match the original underlying distribution.

twinify uses a simple approach to model features with missing values through the following like-
lihood function:

p(x | qNA, θx) = δNA(x)qNA + φ(x | θ)(1− qNA)1(x 6= NA), (4)

where φ(x | θx) is the likelihood for existing values of x, qNA denotes the probability that x is
missing and δNA(x) is the Dirac delta function. Similar to other model parameters, we also learn a
posterior for qNA.

We note that this model alone treats the values as missing completely at random, which often is too
strong an assumption. However, it allows us to model data with missing values without imputation.
Also coupled with the mixture model, the above model learns dependencies in the missingness
patterns, similar to feature correlations in general.

For users specifying their own model using NumPyro, this missingness model is readily available in
twinify’s NAModel class. In twinify’s automatic modelling, the missingness model is automati-
cally applied whenever missing values are detected for a feature.

3.2 Executing twinify

twinify ’s actual model fitting and data synthetisation is made accessible to the user through the
twinify command line program. The only arguments that must always be passed to the program

3

are the paths to the original data set file, the model specification (either a text file for automatic mod-
elling or a Python file containing a NumPyro model) as well as the synthetic data output. In addition
to these, a number of command line arguments to tweak the programs behavior and hyperparameters
of the inference are available in order to remain flexible to specific user needs, but sensible default
values have been pre-configured.

One important set of hyperparameters affects the number of iterations in the inference algorithm. To
allow the user to set these twinify adopts the common epoch and minibatch terminology. Note that
this is only for convenience: To benefit from privacy amplification by subsampling, each minibatch
is a random sample from the data.

Another set of hyperparameters are the privacy parameters ε and δ. twinify automatically adapts
the privacy noise in the variational inference algorithm so that the entire training becomes (ε, δ)-DP
(as measured by the Fourier Accountant [20]). Additionally, the user can also specify the size of the
synthetic data set. Since the model parameter inference is differentially private, an arbitrary amount
of samples can be drawn from the posterior preditive distribution. For a full list of all available
command line argument to tweak twinify’s behavior, please refer to the software manual.2

4 Experiments

To demonstrate usefulness of twinify, we use it to create a synthetic twin of a medical data set
from the Albert Einstein Israelite Hospital in São Paulo, Brazil [21]. This data set has previously
been used by Souza et al. [22] in a classification task to predict if a patient is infected with the
SARS-Cov-2 virus. We aim to replicate this analysis on synthetic data generated by twinify.

We rely on twinify’s automatic modelling to build a mixture model based on independent feature
distributions. Fig. 2 shows an excerpt of the model specification. We use different values for the
privacy parameter ε while keeping δ at twinify’s default, the inverse of the data set size.

We trained the same classification model as in [22] on the synthetic data output by twinify and
evaluate the classifiers performance on a test set taken from the original data. Figure 3 shows the
accuracy and AUROC attained by the classifier trained on the privacy-preserving synthetic twin
data compared to the original data (red) for three choices of ε. We additionally include a measure-
ment obtained by training the classifier on synthetic twin data sampled without differential privacy
(green) as a baseline for the expressiveness of the trained probabilistic model unimpeded by privacy
constraints.

1.0 2.0 4.0

0.895

0.900

0.905

0.910

0.915

0.920

0.925

Ac
cu

ra
cy

Classification accuracy (optimized threshold)

Original data
Synthetic data (non private)

1.0 2.0 4.0
0.84

0.86

0.88

0.90

0.92

0.94

AU
C

AUC of ROC curve

Original data
Synthetic data (non private)

Figure 3: Left: Classifier trained with synthetic data achieves accuracy comparable to the classifier
trained with original data with reasonable a level of privacy (ε = 2). Right: The classifier trained
with synthetic data is reasonably well balanced as demonstrated by the AUC of the ROC. Results in
both plots are of 10 independent runs of both the private algorithm with three levels of privacy and
of a non-private variant.

2https://github.com/DPBayes/twinify/

4

https://github.com/DPBayes/twinify/

References
[1] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach to non-interactive

database privacy. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Com-
puting, STOC ’08, pages 609–618, New York, NY, USA, 2008. ACM.

[2] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil Vadhan. On the
complexity of differentially private data release: Efficient algorithms and hardness results. In
Proceedings of the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09,
pages 381–390, New York, NY, USA, 2009. ACM.

[3] Yonghui Xiao, Li Xiong, and Chun Yuan. Differentially private data release through multidi-
mensional partitioning. In Workshop on Secure Data Management, pages 150–168. Springer,
2010.

[4] Amos Beimel, Shiva Prasad Kasiviswanathan, and Kobbi Nissim. Bounds on the sample com-
plexity for private learning and private data release. In Theory of Cryptography Conference,
pages 437–454. Springer, 2010.

[5] Rui Chen, Gergely Acs, and Claude Castelluccia. Differentially private sequential data publi-
cation via variable-length n-grams. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 638–649. ACM, 2012.

[6] Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for dif-
ferentially private data release. In Advances in Neural Information Processing Systems, pages
2339–2347, 2012.

[7] G. Acs, L. Melis, C. Castelluccia, and E. De Cristofaro. Differentially private mixture of
generative neural networks. In 2017 IEEE International Conference on Data Mining (ICDM),
pages 715–720, Nov 2017.

[8] Nazmiye Ceren Abay, Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Latanya
Sweeney. Privacy preserving synthetic data release using deep learning. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases, pages 510–526.
Springer, 2018.

[9] Joonas Jälkö, Eemil Lagerspetz, Jari Haukka, Sasu Tarkoma, Samuel Kaski, and Antti
Honkela. Privacy-preserving data sharing via probabilistic modelling. 2019. https:
//arxiv.org/pdf/1912.04439.pdf.

[10] Brett K Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, Ran Lee, Sanjeev P Bhavnani,
James Brian Byrd, and Casey S Greene. Privacy-preserving generative deep neural net-
works support clinical data sharing. Circulation: Cardiovascular Quality and Outcomes,
12(7):e005122, 2019.

[11] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating synthetic
data with differential privacy guarantees. In International Conference on Learning Represen-
tations (ICLR 2019), 2019.

[12] Du Phan, Neeraj Pradhan, and Martin Jankowiak. Composable effects for flexible and accel-
erated probabilistic programming in NumPyro. arXiv preprint arXiv:1912.11554, 2019.

[13] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofa-
nis Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D. Goodman. Pyro: Deep
Universal Probabilistic Programming. arXiv preprint arXiv:1810.09538, 2018.

[14] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: composable transformations of Python+NumPy
programs. https://github.com/google/jax, 2018.

[15] Roy Frostig, Matthew James Johnson, and Chris Leary. Compiling machine learning programs
via high-level tracing. Systems for Machine Learning, 2018.

5

https://arxiv.org/pdf/1912.04439.pdf
https://arxiv.org/pdf/1912.04439.pdf
https://github.com/google/jax

[16] Lukas Prediger, Joonas Jälkö, Antti Honkela, and Samuel Kaski. d3p - differentially private
probabilistic programming. https://github.com/DPBayes/dppp, 2020.

[17] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro Sassone,
and Ingo Wegener, editors, Automata, Languages and Programming, pages 1–12, Berlin, Hei-
delberg, 2006. Springer Berlin Heidelberg.

[18] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensi-
tivity in private data analysis. In TCC 2006. 2006.

[19] Joonas Jälkö, Onur Dikmen, and Antti Honkela. Differentially private variational inference for
non-conjugate models. In Uncertainty in Artificial Intelligence 2017 Proceedings of the 33rd
Conference, UAI 2017. The Association for Uncertainty in Artificial Intelligence, 2017.

[20] Antti Koskela, Joonas Jälkö, and Antti Honkela. Computing tight differential privacy guaran-
tees using FFT. In The 23rd International Conference on Artificial Intelligence and Statistics,
2020.

[21] Hospital Israelita Albert Einstein. Diagnosis of COVID-19 and its clinical spectrum. Kaggle,
2020. https://www.kaggle.com/einsteindata4u/covid19/.

[22] Tharsis Souza, Gustavo Wenzel Sainatto, and Heli S. P. Souza. COVID-19 machine
learning-based rapid diagnosis from common laboratory tests. Towards Data Science,
2020. https://towardsdatascience.com/covid-19-machine-learning-based-
rapid-diagnosis-from-common-laboratory-tests-afafa9178372, Accessed: 2020-
06-15.

6

https://github.com/DPBayes/dppp
https://www.kaggle.com/einsteindata4u/covid19/
https://towardsdatascience.com/covid-19-machine-learning-based-rapid-diagnosis-from-common-laboratory-tests-afafa9178372
https://towardsdatascience.com/covid-19-machine-learning-based-rapid-diagnosis-from-common-laboratory-tests-afafa9178372

	Introduction
	Privacy preserving data sharing
	Data Sharing with twinify
	Defining the Model
	Executing twinify

	Experiments

