
A Principled Approach to Learning Stochastic
Representations for Privacy in Deep Neural Inference

Fatemehsadat Mireshghallah1, Mohammadkazem Taram1, Ali Jalali2,
Ahmed Taha Elthakeb1, Dean Tullsen1, Hadi Esmaeilzadeh1

1 University of California San Diego, 2 Amazon
{fmireshg, mtaram, a1yousse, tullsen, hadi}@eng.ucsd.com

ajjalali@amazon.com

Abstract

This work shows that, in many cases, only a small portion of the input is required for
a cloud-based machine learning service to offer an accurate prediction. Discovering
this subset is one of the main objectives of this paper. We formulate this problem
as a gradient-based perturbation maximization method that discovers this subset in
the input feature space with respect to the decision making of the prediction model
used by the provider. After identifying the essential subset, our framework, Cloak,
suppresses the rest of the features in the consumer’s input and only sends the essential
ones to the cloud. As such, the service provider can use those features to return an
accurate prediction and also to improve its service, while at the same time the privacy
of the consumer is better protected. We also demonstrate in our experiments that by
removing the extra features, the post-hoc fairness of the classifier is improved as well.

1 Introduction
The computational complexity of Machine Learning (ML) models has pushed their execution to the
cloud. The edge devices on the user side capture and send their data to the cloud for prediction services.
On the one hand, this exchange of data for services has become pervasive since the provider can enhance
the user experience by potentially using the data for betterment of its services [1], which in many cases
is offered for free. On the other hand, as soon as the data is sent to the cloud, it can be misused by the
cloud provider, or leaked through security vulnerabilities even if the cloud provider is trusted [2, 3, 4, 5].
The insight in this paper is that a large fraction of the data is not relevant to the prediction service and can
be sifted prior to sending the data out, thus enabling access to the services with much greater privacy. As
such, we propose Cloak, an orthogonal approach to the existing techniques that mostly rely on crypto-
graphic solutions and impose prohibitive delays and computational cost. Table 1 summarizes most state-
of-the-art encryption-based methods and their runtime compared to unencrypted execution on GPUs.
As shown, these techniques impose between 318× to 14,000× slowdown. An image classification in-
ference is performed in multiple seconds, an order of magnitude away from the service-level agreement
between users and cloud providers, which is between 10 to 100 milliseconds according to MLPerf in-
dustry measures [6, 7]. Such slowdowns will lead to unacceptable interaction with services that require
near real-time response (e.g., home automation cameras). Cloak provides a middle ground, where there
is a provable degree of privacy while the prediction latency is essentially unaffected. To that end, Cloak
only sends out the features that the provider essentially requires to carry out the requested service.

Table 1: Slowdown of cryptographic techniques vs. conven-
tional GPU execution on Titan Xp and Cloak.

Cryptographic Release DNN Dataset Prediction Time (sec) SlowdownTechnique Year Encry. Conv. Cloak

FALCON [8] 2020 VGG-16 ImageNet 12.96 0.0145 0.0148 906×

DELPHI [9] 2020 ResNet-32 CIFAR-100 3.5 0.0112 0.0113 318×

CrypTen [10] 2019 ResNet-18 ImageNet 8.30 0.0121 0.0123 691×

GAZELLE [11] 2018 ResNet-32 CIFAR-100 82.00 0.0112 0.0113 7,454×

MiniONN [12] 2017 LeNet-5 MNIST 9.32 0.0007 0.0007 14,121×

Existing privacy techniques are applica-
ble to scenarios that can tolerate longer de-
lays, but are not currently suitable for con-
sumer applications, which rely on interac-
tive prediction services. However, having
no privacy protection is also not desirable.

To that end, this paper presents
Cloak, a framework that sifts the
features of the data based on their
relevance to the target prediction task.
To solve this problem, we reformulate the
objective as a gradient-based optimization problem, that generates a sifted representation of the input.

Preprint. Under review.

The intuition is that if a feature can consistently tolerate addition of noise without degrading the utility,
that feature is not conducive to the classification task. As such, we augment each feature iwith a scaled
addition of a noise distribution (σi.N(0,1)) and learn the scales (σis). To learn the scales, we start
with a pre-trained classifier with known parameters and drive a loss function with respect to the scales
while the formulation comprises the model as a known analytical function. The larger the scales, the
larger the noise that can be added to a corresponding feature, and the less conducive the features is.
As such, the learned scales are thresholded to suppress the non-conducive features to a constant value,
which yields the sifted representation of the input. By removing such features, Cloak guarantees that
no information about them can be learned or inferred from the sifted representation that the consumer
sends. Figure 1 shows examples of conducive features for multiple tasks discovered by Cloak and the
corresponding sifted representation for an example image. Our differentiable formulation of finding
the scales minimizes the upper bound of the Mutual Information (MI) between the irrelevant features
and the sifted representation (maximizing privacy) while maximizing the lower bound of MI between
the relevant features and the generated representation (preserving utility).

SR
=7

0%
-7

5%
AL

=0
.0

%
-0

.5
%

Hair Glasses Gender Smile Overlap

SR
=8

5%
-9

0%
AL

=0
.5

%
-1

.5
%

SR
=9

3%
-9

6%
AL

=5
.2

%
-1

0.
3%

Se
gr

eg
at

ed
 R

ep
re

se
nt

at
io

n

Raw Image

Figure 1: Cloak’s discovered features for target DNN
classifiers (VGG-16) for black-hair color, eyeglasses,
gender, and smile detection. The colored features
are conducive to the task. The 3 sets of features de-
picted for each task correspond to different suppres-
sion ratios (SR). AL denotes the range of accuracy
loss imposed by the suppression.

Experimental evaluation with real-world datasets
shows that Cloak reduces the MI between in-
put images and the publicized representation by
85.01% with accuracy loss of only 1.42%.

Optimization Problem: Let x∈Rn be an input,
and c⊆x and u⊆x be two disjoint sets of con-
ducive and non-conducive features with respect
to our target classifier (fθ). We construct a noisy
representation xc = x + r where r ∼ N(µ,Σ)
and Σ is a diagonal covariance matrix, as we set
the elements of the noise to be independent. This
noisy representation helps find the conducive fea-
tures. The goal is to construct xc such that the
mutual information between xc and u is mini-
mized (for privacy), while the mutual informa-
tion between xc and c is maximized (for utility).
The is written as the following soft-constrained
optimization problem:

min
xc

I(xc; u)−λI(xc; c) (1)

To solve this, we bound the terms of this equation,
and then take an iterative approach [13]. we find
an upper bound for I(xc; u) and a lower bound
for I(xc; c) (appendix A.1).

2 Cloak Framework
This section describes Cloak’s framework in more detail. Cloak comprises of two phases: first, an
offline phase where we solve the optimization problems to find the conduciveness of the features and
the suppression constant values. Second, an online prediction phase where the non-conducive features
in a given input are suppressed and a sifted and suppressed representation of the data is sent to the
remote target service provider for prediction. In this section we discuss details of these two phases,
starting from the details of the offline phase.

Noise Re-parameterization. To solve the optimization problem above, Cloak’s approach is to cast
the noise distribution parameters as trainable tensors, making it possible to solve the problem using
conventional gradient-based methods. For this purpose, we applied some constraints on the noise
distribution standard deviation and re-parameterized it. The details are in the appendix A.2.

Cloak’s Perturbation Training Workflow. Algorithm 1 shows the steps of Cloak’s optimization
process. This algorithm takes the training data (D), labels (y), a pre-trained model (fθ), and the privacy-
utility knob (λ) as input, and computes the optimized tensor for noise distribution parameters. During
the initialization step, the algorithm sets the trainable tensor for the means (µ) to 0, and initializes the
std substitute trainable tensor (ρ, where σ= (1.0+tanh(ρ))/2.(M)) with a large negative number.
This generates the initial value of zero for the standard deviations. In optimization step, the loss is
computed on a batch of training data and the gradient of the loss with respect to µ and ρ are calculated.
Since the loss (appendix, Equation 8) incorporates expected value over noise samples, Cloak uses
Monte Carlo sampling [14] with sufficiently large number of noise samples to calculate the loss. Once
the training is finished, the optimized mean and std tensors are collected and passed to the next phase.

2

Feature Sifting and Suppression. For sifting the features we use the trained standard deviation tensor
(σ), which we call “noise map”. A high value in the noise map for a feature indicates that the feature
is less important. Different noise maps are created by changing the privacy-utility knob (λ). We use
a cutoff threshold T , to map the continuous spectrum of values of a noise map, to binary values (b).
While choosing the cutoff threshold (T) depends on the privacy-utility trade-offs, in practice, finding
the optimal value for T is not challenging, because the trained σs are easy to be sifted as they are pushed
to either side of the spectrum, i.e., they either have a very large (nearM) or a very small value (near 0).

To suppress the non-conducive features, one simple way is to send the noisy representations, i.e, adding
noise from the (µ,σ2) to the input to get the xc representations that are sent out for prediction. This
method, however, suffers from two shortcomings: first, it does not directly suppress and remove the
features, which could leave the possibility of data leakage. Second, because of the high standard
deviations of noise, in some cases the generated representation might be out of the domain of the
target classifier, which could have negative effects on the utility. Another way of suppressing the
non-conducive features is to replace them with zeros (black pixels in images for example). This scheme
also suffers from potential accuracy degradation, as the black pixels might not match the distribution of
the data that the classifier expects. To address this, we find a suppressed representation (Section A.1.4),
i.e., we train the constant suppression values that need to replace the non-conducive features. Intuitively,
these learned values reveal what the target classifier perceives as common among all the inputs from
the training set, and what it expects to see. Algorithm 2 shows the steps of this training process. The
algorithm finds µs, the values by which we replace the non-conducive features. The only objective of
this training process is to increase the accuracy, therefore we use cross-entropy loss as our loss function.

Algorithm 1 Perturbation Training
1: Input: D, y, fθ ,m,λ
2: Initialize µ=0, ρ=−10 andM≥0
3: repeat
4: Select training batch x from D
5: Sample e∼N(0,1)

6: Let σ=
1.0+tanh(ρ)

2 (M)

7: Let r=σ◦e+µ
8: Take gradient step on µ, ρ from Eq. (8)
9: until Algorithm converges
10: Return: µ, σ

Algorithm 2 Suppression-Value Training
1: Input: D, y, fθ , σ, µ, b
2: Initialize µs=µ
3: repeat
4: Select training batch x from D
5: Sample r∼N(0,σ2)
6: Let xs=(x+r)◦b+µs
7: Take gradient step on µs from Er[LCE(fθ(xs), y)]
8: until Algorithm converges
9: Return: µs

Online Prediction. Cloak’s online prediction is computationally efficient; it only adds noise sampling,
masking, and addition to the conventional prediction. First a noise tensor sampled from the optimized
distribution N(0,σ2) is added to the input, then the binary mask b is applied to the noisy input image.
Finally µs is added to x and the resulting sifted representation is sent to the service provider. As an
example, the last row of Figure 1 shows representations generated by Cloak using the noise maps from
the third row. The non-conducive features are removed and replaced with µs. The conducive features,
however, are visible.

3 Experimental Results
To evaluate Cloak, we use four real-world datasets on four Deep Neural Networks (DNNs). Details are
provided in A.4.

Privacy-Accuracy Trade-Off. Figure 2a shows accuracy loss of the DNN classifier vs. the loss
in mutual information using sifted representations. This is the loss in mutual information between
the original image and its noisy representation, divided by the amount of information in bits in the
original image. In this experiment, we compare Cloak to adding Gaussian perturbation of mean
zero and different standard deviations to all pixels of the images. For fair comparison, we choose
Cloak’s suppression with noisy representations. For UTKFace, Cloak reduces the information in the
input significantly (93% and 85% respectively) with little loss in accuracy (0.5% and 2.7%). We see
that Cloak achieves a significantly higher accuracy for same loss in mutual information compared to
Gaussian perturbation. This is because Cloak adds more noise to the irrelevant features, and less to the
relevant ones, whereas Gaussian perturbations are added uniformly across the input. Results for other
DNNs and datasets can be found in the appendix (Fig. 4).

Adversary to Infer Information. We devise an experiment in which an adversary tries to infer
properties of the sifted representations using a DNN classifier. We assume two adversary models.
First, the adversary who has access to an unlimited number of samples from the sifted representations,
therefore she can re-train her classifier to regain accuracy on the sifted representations. Second, a model
in which the adversary cannot retrain her classifier on the sifted representations. In this experiment, we
choose smile detection as the target prediction task for which Cloak generates representations. Then,
we model adversaries who try to discover two properties from the sifted representations: eyeglasses and

3

80 85 90 95
Mutual Information Loss (%)

0

10

20

30

40

Ac
cu

ra
cy

 L
os

s (
%

) Method
Cloak
Gaussian Perturbation

(a) Privacy-utility Trade-off

0 20 40 60 80 100
Suppression Ratio (%)

50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Method
White-box Cloak
Black-box Cloak

(b) Black-box Smile Detection

0.04 0.06 0.08 0.10 0.12 0.14
Fairness Metric Values

75.0
77.5
80.0
82.5
85.0
87.5
90.0

Ac
cu

ra
cy

 o
f T

ar
ge

t T
as

k
(H

ai
r C

ol
or

 C
la

ss
ifi

ca
tio

n)

SR=46%

SR=77%

SR=85%

SR=92%
SR=96%

M
or

e
Ac

cu
ra

te

More Fair

Cloak DemP Cloak EO Original DemP Original EO Baseline Accuracy

(c) Effects of Cloak on Post-hoc Fairness

88 90 92 94 96 98 100
Suppression Ratio (%)

50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Suppression Method
Trained Noise
Trained Const. Values
Const. Zeros

(d) Suppression Schemes
0.5 0.6 0.7 0.8 0.9 1.0

Accuracy of Other Tasks
(Hair Color/Eye Glasses)

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

0.950

Ac
cu

ra
cy

 o
f T

ar
ge

t T
as

k
(S

m
ile

 D
et

ec
tio

n)

= 0.0

= 2.0

= 3.0

= 3.7

= 4.5= 4.8

= 4.9

Task
Hair Color Detection
Hair Color Detection w/ Retraining
Eyeglasses Detection
Eyeglasses Detection w/ Retraining
Hair Color Detection Baseline
Eye Glasses Detection Baseline
Smile Detection Baseline
Accuracy of Random Predictor

(e) Adversary to Infer Information

Figure 2: (a) Privacy-utility trade-off for UTKFace.(b) performance of Cloak in a black-box setting. (c)
Post-hoc fairness. (d) compares different suppression methods. (e) Protection from an adversary that
tires to infer black-hair color or eyeglasses from the sifted representations.

hair color. The adversaries have pre-trained classifiers for both these tasks. Figure 2e shows the results
of this experiment. Each point in this figure is generated using a noise map with a Suppression Ratio
(SR) noted in the figure. Higher SR means more features are suppressed. When adversaries do not
retrain their models, using sifted representations with 95.6% suppression ratio causes the adversaries to
almost completely lose their ability to infer eyeglasses or hair color and reach to the random classifier
accuracy (50%). This is achieved while the target smile detection task only loses 5.16% accuracy.
When adversaries retrain their models, using representations with slightly higher suppression ratio
(98.3%), they still end-up with near random classifiers, but this time, the accuracy of the target task
drops to 78.9%. With the same suppression ratio, the adversary who tries to infer hair color loses more
accuracy than the adversary who tries to infer eyeglasses. This is because, as shown in Figure 1, the
conducive features of smile overlap less with hair than with the eyeglasses.

Black-Box Access Mode. We show that it is possible for Cloak to protect users’ privacy even with
limited access to the target model. We consider a black-box setting in which we assume Cloak does
not have any knowledge of the target model architecture or its parameters and is only allowed to send
requests and get back responses. In this setting, following similar methodology to the methodology
described in Shokri et al. [15] we train a substitute model that helps us train Cloak’s representations.
Since we assume no knowledge of the model architecture, Cloak substitutes the target classifiers with
another architecture, i.e, ResNet18 with VGG-16. After training the substitute model, we apply Cloak
to them to find noise maps and suppressed representations. Figure 2b and 3 show the results for these
experiments. Cloak performs similarly effective in both white-box and black-box settings and for both
hair color classification and smile detection tasks. The reason is that the DNN classifiers of the same
task are known to learn similar patterns and decision boundaries [16, 17].

Post-hoc Effects of on Fairness. Cloak, by removing extra features, not only benefits privacy but can
also remove unintended biases of the classifier. In many cases the features that bias the classifiers
highly overlap with the non-conducive features that Cloak discovers. Here we evaluates this positive
side-effect of Cloak by adopting a setup similar to that of Kairouz et al. [18]. We measure the fairness
of the black-hair color classifier using the sifted representations while considering gender to be a
sensitive variable that can cause bias. We measure two metrics: the difference in Demographic Parity
(∆DemP), and the difference in Equal Opportunity (∆EO). Figure 2c shows that as Cloak suppresses
more non-conducive features, the fairness metrics improve significantly. The biasing features in the
hair color classifier are not necessarily the gender features shown in Figure 1. Those features show
what a gender classifier uses to make its decision.

Different suppression schemes. Figure 2d shows the accuracy of the suppression schemes described
in Section 2 on the smile detection task (on CelebA w/ VGG-16). Among different schemes, suppression
using the trained values yields the best accuracy.

4

4 Conclusion
We propose Cloak, a mechanism that finds features in the data that are unimportant for a cloud ML
prediction model. That enables Cloak to suppress those features before publicizing them, providing
only the minimum information exposure. In doing so, Cloak not only minimizes the impact on the
utility of the service, it also imposes minimal overhead on the response time of the prediction service.

References
[1] O. Rana and J. Weinman, “Data as a currency and cloud-based data lockers,” IEEE Cloud

Computing, vol. 2, no. 2, pp. 16–20, 2015.
[2] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative execution,” in
IEEE Symposium on Security and Privacy (S&P), 2019.

[3] S. A. Thompson and C. Warzel, “The privacy project: Twelve million phones, one dataset, zero
privacy,” 2019. online–accessed February 2020, url: https://www.nytimes.com/ interactive/2019/
12/19/opinion/ location-tracking-cell-phone.html.

[4] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel memory from user space,”
in USENIX Security Symposium (USENIX Security), 2018.

[5] A. Newcomb, “Facebook data harvesting scandal widens to 87 million people,” 2018.
online–accessed February 2020, url:https://www.nbcnews.com/ tech/ tech-news/ facebook-data-
harvesting-scandal-widens-87-million-people-n862771.

[6] V. J. Reddi, C. Cheng, D. Kanter, P. Mattson, G. Schmuelling, C.-J. Wu, B. Anderson, M. Breughe,
M. Charlebois, W. Chou, et al., “MLPerf inference benchmark,” in International Symposium on
Computer Architecture (ISCA), 2020.

[7] MLPerf Organization, “MLPerf Benchmark Suite,” 2020. url: https://mlperf .org.
[8] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin, “Falcon:

Honest-majority maliciously secure framework for private deep learning,” arXiv preprint
arXiv:2004.02229, 2020.

[9] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A cryptographic
inference service for neural networks,” in USENIX Security Symposium (USENIX Security), 2020.

[10] Facebook, “A research tool for secure machine learning in pytorch,” 2019. online–accessed June
2020, url: https://crypten.ai.

[11] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low latency framework for
secure neural network inference,” in USENIX Security Symposium (USENIX Security), 2018.

[12] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via minionn
transformations,” in ACM Conference on Computer and Communications Security (CCS), 2017.

[13] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra, “Weight uncertainty in neural
networks,” arXiv preprint arXiv:1505.05424, 2015.

[14] M. H. Kalos and P. A. Whitlock, Monte Carlo Methods. Vol. 1: Basics. USA: Wiley-Interscience,
1986.

[15] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks against
machine learning models,” in IEEE Symposium on Security and Privacy (S&P), 2017.

[16] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and A. Swami, “Practical black-box
attacks against machine learning,” in ACM on Asia conference on computer and communications
security (AsiaCCS), 2017.

[17] D. Arpit, S. Jastrzkebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer,
A. Courville, Y. Bengio, et al., “A closer look at memorization in deep networks,” in International
Conference on Machine Learning (ICML), 2017.

[18] P. Kairouz, J. Liao, C. Huang, and L. Sankar, “Censored and fair universal representations using
generative adversarial models,” arXiv preprint arXiv:1910.00411, 2019.

[19] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[20] N. J. Beaudry and R. Renner, “An intuitive proof of the data processing inequality,” arXiv preprint

arXiv:1107.0740, 2011.
[21] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private empirical risk minimiza-

tion,” arXiv preprint arXiv:0912.0071, 2009.
[22] K. Chaudhuri, A. D. Sarwate, and K. Sinha, “A near-optimal algorithm for differentially-private

principal components,” J. Mach. Learn. Res., vol. 14, p. 2905–2943, Jan. 2013.
[23] C. Dwork and A. Roth, “The algorithmic foundations of differential privacy,” Found. Trends

Theor. Comput. Sci., vol. 9, pp. 211–407, Aug. 2014.

5

https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
https://www.nytimes.com/interactive/2019/12/19/opinion/location-tracking-cell-phone.html
 https://www.nbcnews.com/tech/tech-news/facebook-data-harvesting-scandal-widens-87-million-people-n862771
 https://www.nbcnews.com/tech/tech-news/facebook-data-harvesting-scandal-widens-87-million-people-n862771
https://mlperf.org
 https://crypten.ai

[24] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” in ACM Conference on Computer and Communications
Security (CCS), 2016.

[25] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM Conference on Computer
and Communications Security (CCS), 2015.

[26] N. Papernot, M. Abadi, Úlfar Erlingsson, I. Goodfellow, and K. Talwar, “Semi-supervised
knowledge transfer for deep learning from private training data,” arXiv preprint arXiv:1610.05755,
2016.

[27] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson, “Scalable
private learning with pate,” arXiv preprint arXiv:1802.08908, 2018.

[28] E. Hesamifard, H. Takabi, and M. Ghasemi, “Cryptodl: Deep neural networks over encrypted
data,” arXiv preprint arXiv:1711.05189, 2017.

[29] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine learning,”
in IEEE Symposium on Security and Privacy (S&P), 2017.

[30] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing, “Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy,” in International
Conference on Machine Learning (ICML), 2016.

[31] N. Agrawal, A. Shahin Shamsabadi, M. J. Kusner, and A. Gascón, “Quotient: two-party secure
neural network training and prediction,” in ACM Conference on Computer and Communications
Security (CCS), 2019.

[32] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution of neural networks in
trusted hardware,” in International Conference on Learning Representations (ICLR), 2019.

[33] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M. Augustin, M. Backes, and M. Fritz, “Mlcapsule:
Guarded offline deployment of machine learning as a service,” arXiv preprint arXiv:1808.00590,
2018.

[34] K. G. Narra, Z. Lin, Y. Wang, K. Balasubramaniam, and M. Annavaram, “Privacy-preserving
inference in machine learning services using trusted execution environments,” arXiv preprint
arXiv:1912.03485, 2019.

[35] S. A. Osia, A. S. Shamsabadi, S. Sajadmanesh, A. Taheri, K. Katevas, H. R. Rabiee, N. D. Lane,
and H. Haddadi, “A hybrid deep learning architecture for privacy-preserving mobile analytics,”
IEEE Internet of Things Journal, pp. 1–1, 2020.

[36] J. Wang, J. Zhang, W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just privacy,” ACM International
Conference on Knowledge Discovery and Data Mining (KDD), 2018.

[37] F. Mireshghallah, M. Taram, P. Ramrakhyani, A. Jalali, D. Tullsen, and H. Esmaeilzadeh,
“Shredder: Learning noise distributions to protect inference privacy,” in International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2020.

[38] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,” in International
Conference on Computer Vision (ICCV), 2015.

[39] A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-100 (canadian institute for advanced research),”
url: http://www.cs.toronto.edu/∼kriz/cifar.html.

[40] Z. Zhang, Y. Song, and H. Qi, “Age progression/regression by conditional adversarial autoencoder,”
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4352–4360,
2017.

[41] Y. LeCun and C. Cortes, “The mnist dataset of handwritten digits.” online accessed May 2019
http://www.pymvpa.org/datadb/mnist.html.

[42] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” Commun. ACM, vol. 60, pp. 84–90, 2012.

[45] Y. LeCun, “Gradient-based learning applied to document recognition,” 1998.
[46] Z. Szabó, “Information theoretical estimators toolbox,” Journal of Machine Learning Research,

vol. 15, pp. 283–287, 2014.
[47] D. Madras, E. Creager, T. Pitassi, and R. Zemel, “Learning adversarially fair and transferable

representations,” arXiv preprint arXiv:1802.06309, 2018.

6

http://www.cs.toronto.edu/~kriz/cifar.html
 http://www.pymvpa.org/datadb/mnist.html

A Appendix

A.1 Cloak’s Optimization Problem

This section formally describes the optimization problem and presents a computationally tractable
method towards solving it. Let x ∈ Rn be an input, and c ⊆ x and u ⊆ x be two disjoint sets of
conducive and non-conducive features with respect to our target classifier (fθ). We construct a noisy
representation xc = x+r where r∼N(µ,Σ) and Σ is a diagonal covariance matrix, as we set the
elements of the noise to be independent. This noisy representation helps find the conducive features
and is used to create a final suppressed representation xs that is sent to the service provider. The goal is
to construct xc such that the mutual information between xc and u is minimized (for privacy), while
the mutual information between xc and c is maximized (for utility). The is written as the following
soft-constrained optimization problem:

min
xc

I(xc; u)−λI(xc; c) (2)

To solve this problem, we bound the terms of our optimization problem of Equation 2, and then take an
iterative approach [13]. we find an upper bound for I(xc; u) and a lower bound for I(xc; c).

A.1.1 Upper bound on I(xc;u)

Since u is a subset of x, the following holds:

I(xc; u)≤I(xc; x)=H(xc)− 1

2
log((2πe)n|Σ|) (3)

Where H(xc|x) is the entropy of the added Gaussian noise. Here |Σ| denotes the determinant of the
covariance matrix. Then by applying Theorem 8.6.5 from [19] which gives an upper bound for the
entropy, to xc, we can write:

I(xc; u)≤ 1

2
log((2πe)n

|Cov(xc)|
|Σ|

) (4)

Since x and r are independent variables and xc = x + r, we have |Cov(xc)| = |Cov(x) + Σ|. In
addition, since covariance matrices are positive semi-definite, we can get the eigen decomposition of
Cov(x) as QΛQT where the diagonal matrix Λ has the eigenvalues. Since Σ is already a diagonal
matrix, |Cov(x)+Σ|= |Q(Λ+σ2)QT |=

∏n
i=1(λi+σ2

i). By substituting this in Equation 4, and
simplifying we get the upper bound for I(xc; u) as the following:

I(xc; u)≤ 1

2
log((2πe)n

n∏
i=1

(1+
λi
σ2
i

)) (5)

A.1.2 Lower bound on I(xc;c)

Theorem A.1. The lower bound on I(xc;c) is:
H(c)+max

q
Exc,c[logq(c|xc)] (6)

Where q denotes all members of a possible family of distributions for this conditional probability.
Proof. The lemma and accompanying proof for this theorem are redacted to save space.
A.1.3 Loss Function

Now that we have the upper and lower bounds, we can reduce our problem to the following optimization
where we minimize the upper bound (Equation 5) and maximize the lower bound (Equation 6):

min
σ,q

1

2
log((2πe)n

n∏
i=1

(1+
λi
σ2
i

))+λ
∑
ci,xci

(−logq(ci|xci
)) (7)

We write the expected value in the same equation in the form of a summation over all possible
representations and conducive features. To make this summation tractable, in our loss function we
replace this part of the formulation with the empirical cross-entropy loss of the target classifier over all
training examples. We also relax the optimization further by rewriting the first term. Since minimizing
this term is equivalent to maximizing the standard deviation of the noise, we change the fraction into a
subtraction. Our final loss function becomes:

L=−log
1

n

n∑
i=0

σ2
i +λEr∼N(µ,σ2),x∼D

[
−

K∑
k=1

yklog(fθ(x+r))k

]
(8)

The second term is the expected cross-entropy loss, over the randomness of the noise and the data
instances. The variable µ is the mean of the noise distributions. The variable K is the number of

7

classes for the target task, and yk is the indicator variable that determines if a given example belongs to
class k. More intuitively, the first term increases the noise of each feature and provides privacy. The
second term decrease the classification error and maintains accuracy. The parameter λ is a knob which
provides a trade-off between these two.

A.1.4 Suppressed Representation

After finding the noisy representation xc, we use it to generate the final suppressed representation
xs. By applying a cutoff threshold T on σ, we generate binary mask b such that bi = 1 if σi ≥ T ,
and bi = 0 otherwise. We create representation xs = (x + r) ◦b +µs, where r ∼ N(0,σ) and µs

are constant values that are set to replace non-conducive features. According to the data processing
inequality [20], the upper bound on I(xc;u) holds for xs as well, since I(xs;u)≤I(xc;u). The same
inequality also implies that the lower bound achieved for I(xc;c) does not necessarily hold for xs.
To address this, we write another optimization problem, to find µs such that cross entropy loss, i.e,
minµs

∑K
k=1yklog(fθ(xs))k is minimized. Solving this guarantees that the lower bound of Equation 6

also holds for I(xs; c).

A.2 Noise Re-parameterization

To be able to define gradients over the means and variances, we rewrite the noise sampling to be
r =σ◦e+µ, instead of r∼N(µ,σ2), where e∼N(0,1). The symbol ◦ denotes the element-wise
multiplication of elements of σ and e. This redefinition enables us to formulate the problem as an
analytical function for which we can calculate the gradients. We also need to reparameterize σ to limit
the range of standard deviation of each feature (σ). If it is learned through a gradient-based optimization,
it can take on any value, while we know that variance can not be negative. In addition, we also do not
want the σs to grow over a given maximum,M . We put this extra constraint on the distributions, to limit
the σs from growing infinitely (to decrease the loss), taking the growth opportunity from the standard
deviation of the other features. Finally, we define a trainable parameter ρ and write σ= 1.0+tanh(ρ)

2 M ,
where the tanh function is used to constraint the range of the σs, and the addition of 1 is to guarantee
the positivity of the variance.

A.3 Related Work

For training, the literature abounds with the studies that use noise addition as a randomization mech-
anism to protect privacy [21, 22, 23, 24, 25, 26, 27]. Many of these studies have applied differential
privacy to a training setting where they concern with leaking private information in training set
through the machine learning model. Privacy on offloaded computation can also be provided by the
means of cryptographic tools such as homomorphic encryption and/or Secure Multiparty Computation
(SMC) [28, 11, 29, 30, 12, 9, 8, 31]. However, these approaches suffer from a prohibitive computational
costs (See Table 1), on both cloud and user side, exacerbating the complexity and compute-intensivity
of neural networks especially on resource-constrained edge devices. Several other research [32, 33, 34]
rely on trusted execution environments to remotely run ML algorithm. However, this model requires the
users to send their data to an enclave running on remote servers and is vulnerable to the new breaches in
hardware [2, 4].

Only a handful of studies have addressed privacy of prediction by adding noise to the data. Osia et
al. [35] employed dimensionality reduction techniques to reduce the amount of information before
sending to untrusted cloud. Wang et al. [36] propose a noise injection framework that randomly nullifies
input elements for private inference, but their method requires retraining of the entire network. In
a more recent work [37], Mireshghallah et al. propose to heuristically sample and reorder additive
noise at run time based on the previously collected additive tensors that the DNN can tolerate (anti-
adversarial patterns). Due to the heuristic and pattern-based nature of this prior work, it does not
provide formal guarantees. In contrast, Cloak’s approach is to directly learn conducive features and
suppress non-conducive ones with learned constant values. This enables us to theoretically show we
decrease the upper bound on the mutual information between the input and publicized representation,
and increase the lower bound on utility. We also experimentally show that Cloak outperforms this prior
work. More importantly, this prior work relies on executing parts of the network on the edge side and
sending the results to the cloud. Therefore, it requires collaboration of the service provider and change
in the infrastructure. In contrast, we show that Cloak can perform equally efficient in black-box settings
without collaboration of the service provider.

8

0 20 40 60 80 100
Suppression Ratio (%)

50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Method
White-box Cloak
Black-box Cloak

Figure 3: Black-box hair color

10 20 30 40 50
Mutual Information Loss (%)

0

10

20

30

40

Ac
cu

ra
cy

 L
os

s (
%

) Method
Cloak
Gaussian Perturbation

(a) CIFAR-100

85.0 87.5 90.0 92.5 95.0 97.5
Mutual Information Loss (%)

0

10

20

30

40

Ac
cu

ra
cy

 L
os

s (
%

) Method
Cloak
Gaussian Perturbation

(b) MNIST

Figure 4: Privacy-Utility Trade-off for More Datasets

A.4 Detailed Experimental Setup

There are four datasets used in our evaluations: CelebA [38], CIFAR-100 [39], UTKFace [40] and
MNIST [41]. We have used these datasets with VGG-16 [42], ResNet-18 [43], AlexNet [44], VGG-16
(modified), and LeNet-5 [45] neural networks, respectively. We define a set of target prediction
tasks over these datasets. Specifically, we use smile detection, black-hair color classification, and
eyeglass detection on CelebA, the 20 super-class classification on CIFAR-100, and gender detection
on UTKFace. For MNIST, we use a classifier that detects if the input is greater than five and another
one that classifies what the input digit actually is. The accuracy numbers reported in this section are
all on a held-out test set, which has not been seen during training by the neural networks. For Cloak
results, since the output is not deterministic, we repeatedly run the prediction ten times on the test set
with the batch size of one and report the mean accuracy. Since the standard deviation of the accuracy
numbers is small (consistently less than 1.0%) the confidence bars are not visible on the graphs. The
input image sizes for CelebA, CIFAR-100, UTKFace and MNIST are 224× 224× 3, 32× 32× 3,
32×32×3, and 32×32, respectively. In addition, in our experiments, the inputs are all normalized to 1.
The experiments are all carried out using Python 3.6 and PyTorch 1.3.1. We use Adam optimizer for
perturbation training. The mutual information numbers reported in this section are estimated over the
test set using the Shannon Mutual Information estimator provided by the Python ITE toolbox [46].

A.4.1 Experimentation Hardware and OS

We have run the experiments for CelebA dataset on an Nvidia RTX 2080 Ti GPU, with 11GB VRAM,
paired with 10 Intel Core i9-9820X processors with 64GBs of memory. The rest of the experiments
were run on the CPU. The systems runs an Ubuntu 18.04 OS, with CUDA version V10.2.89.

A.4.2 Neural Network Architectures

The code for all the models is available in the supplementary materials. The VGG-16 for UTKFace is
different from the conventional one in the size of the last 3 fully connected layers. They are (512,256),
(256,256) and (256,2). The pre-trained accuracy of the networks for smile detection, super-class
classification, gender detection and greater than five detection are 91.8%, 55.7%, 87.87% and 99.29%.

A.4.3 Mutual Information Estimation

The mutual information between the input images and their noisy representations are estimated over the
test set images using ITE [46] toolbox’s Shannon mutual information estimator. For MNIST images,
our dataset had inputs of size 32×32 pixels, which we flattened to 1024 element vectors, for estimating
the mutual information. For other datasets, since the images were larger (32×32×3), there were
more dimensions and mutual information estimation was not accurate. So, what we did here was
calculate mutual information channel by channel (i.e. we estimated the mutual information between
the red channel of the image and its noisy representation, then the green channel and then blue), and we
averaged over all channels.

9

Table 2: hyper parameters for Section 3

Model Point# Training Phase 1 Training Phase 2

epoch LR λ epoch LR λ

CIFAR-100

1 17 0.001 1 3 0.001 10
2 24 0.001 1 2 0.001 10
3 30 0.001 1 2 0.001 10
4 40 0.001 0.2 2 0.001 10
5 140 0.001 0.2 2 0.001 10

MNIST

1 50 0.01 100 90 0.001 200
2 50 0.01 100 160 0.001 200
3 50 0.01 100 180 0.001 200
4 50 0.01 100 260 0.001 100
5 50 0.01 100 290 0.001 100

UTKFace

1 6 0.01 0.1 6 0.0001 100
2 4 0.01 0.1 2 0.0001 100
3 8 0.01 0.1 2 0.0001 100
4 10 0.01 0.1 2 0.0001 100
5 12 0.01 0.1 2 0.0001 100

Table 3: hyper parameters for Section 3

Model Point# Training Phase 1 Training Phase 2 Training Phase 3

epoch LR λ epoch LR λ epoch LR λ

VGG16

1 0.5 0.01 1 0.5 0.001 1 - - -
2 0.5 0.01 1 0.7 0.001 1 - - -
3 0.5 0.01 1 0.8 0.001 1 - - -
4 0.8 0.01 1 0.8 0.001 1 0.2 0.001 5
5 1 0.01 1 0.8 0.001 1 0.2 0.001 100

ResNet18

1 1 0.01 10 0.5 0.001 1 - - -
2 1 0.01 5 0.5 0.001 1 - - -
3 1 0.01 5 0.7 0.001 1 - - -
4 1.2 0.01 3 0.5 0.001 1 0.2 0.001 5
5 2 0.01 5 0.5 0.001 1 0.2 0.001 5

The numbers reported in Section 3 are mutual information loss percentages, which means the lost
mutual information among the publicized image and the original one is divided by the information
content in the original images. This information content was estimated using self-information (Shannon
information), using the same toolbox.

A.4.4 Hyperparameters for Training

Tables 2, 3 and 4 show the hyperparameters used for training. For the first one, the Point# indicates
the experiment that produced the given point in the graph, if the points were numbered from left to
right. The hyperparameters of the rest of the experiments are the same as the ones brought. In our
implementation, for ease of use and without loss of generality, we have introduced a variable γ to the
loss function in Equation 8, in a way that γ= 1

λ . With this introduction, we do not directly assign a
λ (as if λwere removed and replaced by γ as a coefficient of the other term). In the tables, we have
used lambda to be consistent, and in the cells where the value for λ is not given, it means that the loss is
only cross entropy. But in the Code, the coefficient is set on the other term and is 1/λs reported here.
The batch sizes used for training are 128 for CIFAR-100, MNIST and UTKFace and 40 and 30 for
CelebA. For testing the batch size is 1, so as to sample a new noise tensor for each image and capture
the stochasticity. Also, the number of samples taken for each update in optimization is 1 since we
do mini-batch training and for each mini-batch we take a new sample. Finally,M is set to 1.5 for all
benchmarks, except for CelebA where it is set to be 5.

10

Table 4: hyper parameters for Section 3

Model SR(%) Training Phase 1 Training Phase 2 Training Phase 3

epoch LR epoch LR epoch LR

Adversary-hair

00.00 1 0.01 - - - -
33.60 1 0.01 2 0.0001 1 0.00001
53.70 1 0.01 2 0.0001 1 0.00001
71.00 1 0.01 2 0.0001 1 0.00001
89.70 1 0.01 2 0.0001 3 0.00001
95.60 1 0.01 2 0.0001 2 0.00001
98.30 1 0.01 2 0.0001 3 0.00001

Adversary-glasses

00.00 1 0.01 - - - -
33.60 1 0.01 2 0.0001 1 0.00001
53.70 1 0.01 2 0.0001 1 0.00001
71.00 1 0.01 2 0.0001 1 0.00001
89.70 1 0.01 2 0.0001 3 0.00001
95.60 1 0.01 2 0.0001 2 0.00001
98.30 1 0.01 2 0.0001 3 0.00001

A.5 Fairness Metrics

In a classification task, demographic parity requires the conditional probability of the classifier
predicting output class Ŷ =y given sensitive variable S=0 to be the same as predicting class Ŷ =y

given S=1. In other words, P (Ŷ =y|S=0)=P (Ŷ =y|S=1). Since in most real cases these values
are not the same, the maximum pair-wise difference between these values is considered as a measure
of fairness, ∆DemP , and the lower this difference, the more fair the classifier. Here S would be the
gender, which due to the data provided in the dataset, is binary. We have only two target classes of
black hair and non-black hair, so the ∆DemP (y=0) is the same as ∆DemP (y=1).

Equalized odds is another fairness measure, which requires the conditional probability of the classifier
predicting class Ŷ = y given sensitive variable S = 0 and ground truth class Y = y be equal to the
same conditional probability but with S=1. In other words, P (Ŷ =y|S=0,Y =y)=P (Ŷ =y|S=
1,Y =y). Similar to the demographic parity case, we also measure the difference in these conditional
probabilities for both y=1 (black hair) and y=0 (non-black hair), and report their summation as ∆EO,
commensurate with [47].

11

	Introduction
	Cloak Framework
	Experimental Results
	Conclusion
	Appendix
	Cloak's Optimization Problem
	Upper bound on I(xc; u)
	Lower bound on I(xc; c)
	Loss Function
	Suppressed Representation

	Noise Re-parameterization
	Related Work
	Detailed Experimental Setup
	Experimentation Hardware and OS
	Neural Network Architectures
	Mutual Information Estimation
	Hyperparameters for Training

	Fairness Metrics

