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Abstract

We show that adding differential privacy to Explainable Boosting Machines
(EBMs), an algorithm for training Generalized Additive Models (GAMs), yields
state-of-the-art accuracy while protecting privacy. Our experiments on multiple
classification and regression datasets show that DP-EBMs suffer surprisingly little
accuracy loss, even in the high privacy regime (ε < 1). An additional benefit is
that the trained models are perfectly globally and locally interpretable, which is
often desirable in many of the same settings as differential privacy.

1 Introduction

Security researchers have consistently shown that machine learning models can leak information
about their training data [1, 2]. In some industries, like healthcare, finance, and criminal justice,
models are trained and deployed on sensitive information, where this form of leakage might be
especially disastrous. To combat these situations, researchers have embraced differential privacy,
which establishes a strong mathematical standard for privacy guarantees on algorithms [3, 4]. In
many of these high-stakes situations, model interpretability is also critical to provide audits, help
models work with domain experts like doctors, and correct unwanted errors before deployment [5, 6].
In this paper, we address both concerns by developing a differentially private algorithm for learning
Generalized Additive Models (GAMs) [7]. We show that this method can provide strong privacy
guarantees, high accuracy, and perfect interpretability on tabular datasets.

While GAMs are traditionally fit using smooth low-order splines, we focus on the Explainable
Boosting Machine (EBM), a modern implementation that learns each shape function using boosted
decision trees [8, 9]. EBMs are especially interesting because they often match the accuracy of
complex blackbox algorithms (like XGBoost, random forests, and neural networks [10, 11]), while
having a simple final structure and optimization procedure [12, 13]. We exploit this simplicity to
develop a differentially private learning method for EBMs – DP-EBM – which adds calibrated noise
during the training process. Our experiments on classification and regression datasets show that this
algorithm retains surprisingly high accuracy even with strong differential privacy guarantees.
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2 Preliminaries

2.1 Explainable Boosting Machine

Explainable Boosting Machines belongs to the family of Generalized Additive Models (GAMs),
which are restricted machine learning models that have the form:

g(E[y]) = β + f0(x0) + f1(x1) + ...fk(xk)

where β is an intercept, each fj is a univariate function that operates on a single input feature xj , and
g is a link function that adapts the model to different settings like classification and regression [7].

While GAMs are more flexible than linear models (where each function fj is further restricted to be
linear), they are significantly less flexible than most machine learning models due to their inability
to learn high-order interactions between features (ex: fj(x0, x1)). However, this restricted, additive
structure has the benefit of making GAMs perfectly interpretable. At prediction time, each feature
contributes a single score, which are then summed together and passed through a link function. These
scores are exact local feature importance measures, which can be sorted, compared, and reasoned
about. In addition, each function fk can be visualized to provide an exact global description of how
the model operates across varying inputs.

Research has shown that fitting GAMs with boosted decision trees leads to more accurate models
[8, 5]. EBMs are the latest open-source implementation of boosted tree based GAMs [9]. We build
on top of this software and briefly outline the training process below.

The EBM training procedure starts by binning the data in each feature into B large bins, similar
to other algorithms like LightGBM [14]. It then proceeds to learn each univariate shape function
by using gradient boosted decision trees. However, unlike traditional boosting methods, EBMs use
a cyclic gradient boosting procedure in which each tree is carefully restricted to train on only one
feature at a time in a “round-robin” fashion. During each round of training, EBMs visit each of
the k input features in order, and grow a shallow decision tree on the pseudo-residuals. This tree is
penalized by an extremely low learning rate to mitigate the impact of the ordering of features and
then simply added into the function for that feature. Finally, after growing a decision tree for the k-th
feature, the boosting procedure cycles back to the first feature, and repeats for all E epochs.

3 Algorithms

Algorithm 1: Differentially Private Explainable Boosting Machine (DP-EBM)

Input: X ∈ Rn×K : data, y ∈ Rn: labels, α: learning rate, E: number of epochs, S: number of
leaf nodes, R: range of yi, ε: privacy parameter, Hk: DP Histograms for each feature k

Output: f : learned functions (one per feature)
f = {f1, ..., fk} ← {0, ..., 0} // initialize f as k functions

{r1, ..., rn} ← {y1, ..., yn} // initialize residuals
for epoch(e)← 1 to E do

foreach feature k do
Xk ← X[:, k]
s1, .., sS ← RandomlySplitData(Xk, S) // S = 3 yields 3 leaf nodes
foreach sj do

T←
∑

i∈sj ri(t)

T̂ := T+ σeR · N (0, 1) // Add noise to sum of residuals
µ← αT̂/

∑
bin⊂sj |Hk(bin)|

for bin ∈ sj do
/* Each split sj contains contiguous bins */
fk[bin]← fk[bin] + µ

foreach xi do
ri(t)← yi −

∑k
1 fk(xi,k) // update residuals

return f1, ..., fK

Theorem 3.1. Algorithm 1 is (ε, δ)-private.

2



To add differential privacy guarantees to the EBM algorithm, we make several modifications to the
training procedure. We first spend a small portion of our privacy budget to generate differentially
private bins for each feature of the dataset. After this pre-processing step, we begin boosting. In
traditional tree building algorithms, there are two major data-intensive operations: learning the
structure of the tree (what feature and feature threshold to install at each node in the tree), and
calculating the predicted value of each leaf node [15]. Prior work on differentially private tree
learning typically splits budget between choosing which features to split on, where to split them, and
learning prediction values for each leaf node [16–18].

EBMs naturally avoid spending any privacy budget on choosing which features to include in a tree.
The algorithm is restricted to grow trees on only one feature at a time, and visits each feature on a
data-agnostic "round-robin" schedule. Furthermore, by choosing the splitting thresholds at random,
we can learn the entire structure of each tree without looking at the training data. Prior work and our
empirical evaluations both show that choosing random splits results in little accuracy loss [19]. We
therefore spend the entirety of our budget per iteration on learning the values for each leaf node. Each
leaf contains a disjoint subset of the data, and the predicted value is simply an average of the residuals
for the data belonging to the node. To calculate a private average, we simply add calibrated Gaussian
noise to the sum of residuals per leaf node, and divide by the previously calculated differentially
private counts from our private binning pre-procedure [4]. The learned tree is added into the feature
function fk, and the cyclic boosting procedure continues. A full sketch of the DP-EBM algorithm is
described in Algorithm 1.

4 Experiments

We compare the following algorithms on four classification and three regression datasets:

• DP EBM: Differentially private EBM described in Algorithm 1. We use the following
(default) parameters for all experiments: max_bins = 32, learning_rate = 0.01, n_epochs =
300, max_leaves = 3. We allocate 10% of the total budget to binning and 90% to training.

• Generalized Linear Models: Linear and Logistic Regression are widely prevalent methods
for interpretable machine learning. For both models, we use the implementation in IBM’s
differential privacy library [20]. This software implementation follows the algorithms
described in [21, 22] for linear regression and in [23] for logistic regression.

• DP Boost: DPBoost is a private gradient boosted decision tree algorithm introduced by [18].
It builds on top of LightGBM, a popular boosting framework [14]. We use the parameters
recommended by the DPBoost authors’ open source repository for all experiments.

Regression | RMSE (Lower is better)
dataset ε DPBoost DP Linear Regression DP-EBM

cal-housing

0.5 391316 ± 67258 111437 ± 1284 79479 ± 2019
1.0 204742 ± 8031 109293 ± 1434 75843 ± 1055
2.0 122153 ± 3703 108975 ± 1317 73081 ± 635
4.0 93794 ± 3178 108002 ± 1426 72603 ± 805
8.0 87140 ± 2340 107553 ± 1550 72395 ± 782
Non-Private 46502 ± 787 69284 ± 1414 57038 ± 380

elevators

0.5 0.047 ± 0.004 6.102 ± 3.363 0.006 ± 0.002
1.0 0.024 ± 0.002 2.677 ± 0.867 0.005 ± 0.000
2.0 0.013 ± 0.001 1.297 ± 0.397 0.005 ± 0.000
4.0 0.008 ± 0.001 0.661 ± 0.530 0.004 ± 0.000
8.0 0.006 ± 0.000 0.387 ± 0.181 0.004 ± 0.000
Non-Private 0.002 ± 0.000 0.003 ± 0.000 0.002 ± 0.000

wine-quality

0.5 4.843 ± 0.814 3.886 ± 1.874 0.938 ± 0.012
1.0 2.014 ± 0.140 2.032 ± 0.647 0.822 ± 0.034
2.0 1.324 ± 0.087 1.628 ± 0.418 0.776 ± 0.012
4.0 0.927 ± 0.034 0.891 ± 0.067 0.742 ± 0.015
8.0 0.857 ± 0.014 0.879 ± 0.112 0.729 ± 0.009
Non-Private 0.619 ± 0.013 0.753 ± 0.011 0.702 ± 0.014
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To evaluate performance, we generate 5 train-test splits and report the average and standard deviation
of test performance for each model at varying ε and fixed δ = 1e − 5. We use root mean squared
error (RMSE) as the metric for regression, and area under the ROC curve for classification.

All datasets, with the exception of the healthcare dataset, are publicly available and the script to
reproduce these results will be made public in our repository. We include results from this private,
real world medical dataset to highlight how these models might perform in a high stakes settings
where both privacy and interpretability are critical.

Classification | AUROC (Higher is better)
dataset ε DPBoost DP Logistic Regression DP-EBM

adult-income

0.5 0.535 ± 0.039 0.474 ± 0.082 0.874 ± 0.004
1.0 0.498 ± 0.047 0.441 ± 0.085 0.883 ± 0.005
2.0 0.600 ± 0.037 0.526 ± 0.117 0.888 ± 0.005
4.0 0.726 ± 0.012 0.537 ± 0.087 0.890 ± 0.005
8.0 0.791 ± 0.008 0.521 ± 0.058 0.893 ± 0.004
Non-Private 0.929 ± 0.004 0.633 ± 0.096 0.928 ± 0.004

credit-fraud

0.5 0.398 ± 0.122 0.579 ± 0.033 0.966 ± 0.007
1.0 0.422 ± 0.144 0.505 ± 0.100 0.966 ± 0.006
2.0 0.431 ± 0.096 0.568 ± 0.115 0.968 ± 0.008
4.0 0.530 ± 0.137 0.496 ± 0.104 0.969 ± 0.008
8.0 0.573 ± 0.184 0.622 ± 0.070 0.971 ± 0.008
Non-Private 0.577 ± 0.203 0.907 ± 0.017 0.979 ± 0.004

healthcare

0.5 0.506 ± 0.047 0.455 ± 0.040 0.787 ± 0.023
1.0 0.518 ± 0.049 0.431 ± 0.040 0.811 ± 0.010
2.0 0.507 ± 0.047 0.518 ± 0.038 0.825 ± 0.011
4.0 0.538 ± 0.054 0.518 ± 0.041 0.835 ± 0.009
8.0 0.665 ± 0.026 0.529 ± 0.027 0.838 ± 0.010
Non-Private 0.836 ± 0.011 0.741 ± 0.018 0.846 ± 0.010

telco-churn

0.5 0.496 ± 0.060 0.635 ± 0.122 0.826 ± 0.017
1.0 0.605 ± 0.034 0.384 ± 0.169 0.828 ± 0.018
2.0 0.750 ± 0.024 0.523 ± 0.136 0.829 ± 0.016
4.0 0.762 ± 0.006 0.697 ± 0.072 0.830 ± 0.017
8.0 0.786 ± 0.003 0.739 ± 0.059 0.832 ± 0.016
Non-Private 0.831 ± 0.010 0.838 ± 0.012 0.845 ± 0.013

5 Discussion

Our empirical evaluation shows that DP-EBMs perform surprisingly well on tabular datasets, even
in the high privacy regime (ε < 1). In the non-private setting, EBMs often perform competitively
with other boosting algorithms, like LightGBM [12, 9], but DP-EBMs have a significant advantage
in the differentially private setting. We believe this might be explained by the significant privacy
budget savings when learning each tree – unlike other algorithms, we spend no budget on learning
the tree structure, and focus on learning the best leaf node values. In addition, by growing shallow
trees on single features at a time, each leaf tends to contain large portions of the dataset which further
minimizes the impact of noise. Conversely, DP-EBMs also benchmark well against differentially
private linear methods, which are popular private and interpretable machine learning algorithms.1
The added flexibility of being able to learn non-linear functions on each feature generally results in
a performance boost in the non-private setting, which appears to translate to the private setting. In
addition, the iterative nature of gradient boosting might give DP-EBMs the ability to recover from bad
applications of noise early in the training process. In short, it appears that DP-EBMs can maintain
all the privacy and interpretability of a differentially private linear model with significantly higher
accuracy. In the future, we hope to expand upon the simplified DP-EBM algorithm and re-introduce
features like bagging, interaction detection, and early stopping detailed in [24, 9, 5].

1We observed that both DPBoost and DP Logistic Regression occasionally reported abnormally low AUROCs
(< 0.4) in some experimental runs. The AUROC of models predicting at random is typically around 0.5. By
inverting predictions, these implementations would paradoxically perform better as ε approaches 0.
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