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Abstract

Machine learning models are prone to membership inference attacks, which aim to
infer whether the target sample is a member of the target model’s training dataset.
The serious privacy concerns due to the membership inference have motivated
multiple defenses against membership inference attacks, e.g., differential privacy
and adversarial regularization. Unfortunately, these defenses produce machine
learning models with unacceptably low utility, e.g., classification accuracy. We
propose a new defense based on knowledge distillation, called Distillation for
Membership Privacy (DMP), against membership inference attacks that preserves
the utility of the resulting models significantly better than prior defenses. We pro-
vide a novel criterion to tune the data used for knowledge transfer in DMP in order
to adjust the tradeoffs between utility and privacy of resulting models. Our evalua-
tions clearly demonstrate the state-of-the-art membership privacy-utility tradeoffs
of DMP.1

1 Introduction
Machine learning (ML) models trained using privacy sensitive data can leak private information
about their data owners. This has been demonstrated through various inference attacks [8, 10, 5], and
most notably the membership inference attack (MIA) [24] which is the focus of our work. An MIA
adversary with a blackbox or whitebox access to a target model aims to determine if a given target
sample belonged to the private training data of the target model or not. MIAs are able to distinguish
the members from non-members by learning the behavior of the target model on member versus
non-member inputs.

Recent literature has investigated several defenses against membership inference attacks based on
differential Privacy (DP), e.g., DP-SGD [2] and PATE [15], and based on regularization, e.g., adver-
sarial regularization [13] and L2-regularization [24]. DP based defenses tend to add large amounts
of noise during learning or inference phase and significantly reduce model accuracies. Further-
more, as we show, adversarial regularization and other state-of-the-art regularizations, e.g., label
smoothing [27] and dropout [26], also fail to provide acceptable membership privacy-utility trade-
offs (simply called ‘tradeoffs’ here onward). In summary, existing defenses against MIAs offer poor
tradeoffs between model utility and membership privacy.

Motivated by the poor tradeoffs, we propose a defense against MIAs that significantly improves the
tradeoffs compared to prior defenses. That is, for a given degree of membership privacy (i.e., MIA
resistance), our defense produces models with significantly higher classification accuracies com-
pared to prior defenses. Our defense, called Distillation for Membership Privacy (DMP), leverages
knowledge distillation [9] (more generally called knowledge transfer), which transfers the knowl-
edge of large models to smaller models, and is primarily used for model compression. Intuitively,
DMP protects membership privacy by thwarting the access of the resulting models to the private
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training data. Similar to adversarial regularization, DMP assumes access to a possibly sensitive and
“unlabeled” reference data drawn from the same distribution as the “labeled” private training data,
and uses such reference data to train its final models. We provide a novel criterion to select/generate
reference data to improve membership privacy due to DMP. While some prior work [15] combined
knowledge transfer and DP to protect data privacy, our work is the first to study the promise of
knowledge transfer as the sole technique to train membership privacy-preserving models.

2 Preliminaries

Knowledge distillation. [4, 3] proposed knowledge distillation, which uses the outputs of a large
teacher model to train a smaller student model, in order to compress large models to smaller models.
The outputs used for distillation can vary, e.g., Hinton et al. [9] use class probabilities generated by
the teacher as the outputs, while Romero et al. [19] use the intermediate activations along with class
probabilities of the teacher. It is well established that knowledge distillation produces students with
accuracies similar to their teachers [6, 29]. This also allows DMP to produce highly accurate target
models. Note that, although we use term “distillation”, DMP uses teacher and student models of the
same sizes, because DMP is not concerned with the size of the resulting model.

Membership inference attacks. Below we give a general methodology of MIAs. Consider a
target model θ and a sample (x, y). MIAs exploit the differences in the behavior of θ on members
and non-members of the private Dtr. Therefore, MIAs train a binary attack model to classify target
samples into members and non-members. Such attack models can be neural networks [24, 21] or
simple thresholding functions where threshold is tuned for maximum attack performance [28, 25].
The adversary computes various features of θ for given (x, y), e.g., prediction θ(x, y), θ’s loss on
(x, y), and the gradients of the loss. Let F (x, y, θ) denote the combination of these features. The
attack model h takes F (x, y, θ) as its input and outputs the probability that (x, y) is a member of
Dtr. Let PrDtr and Pr\Dtr

be the conditional probabilities of the members and non-members of Dtr,
respectively. Hence, the expected gain of the attack model for the above setting is given by:

Gθ(h) = E
(x,y)
∼PrDtr

[log(h(F ))] + E
(x,y)
∼Pr\Dtr

[log(1− h(F ))] (1)

In practice, the adversary knows only a finite set of the members D and non-members D′A required
to train h, hence computes the above gain empirically as in (2), and solves for h∗ that maximizes (2).

GθDA,D′A(h) =
∑
(x,y)

∈DA

log(h(F ))
|DA|

+
∑
(x,y)

∈D′A

log(1− h(F ))
|D′A|

(2)

3 Distillation for Membership Privacy (DMP)
DMP is a strong meta-regularizer and the main intuition behind DMP is based on the results by
Sablayrolles et al. [20]. They assume a posterior distribution, P(θ|D), of the parameters trained on
data D = {z1, .., zn} as given in (3). Consider a neighboring dataset D′ = {z1, .., z′j , .., zn} of D,
which is obtained by modifying at most one sample of D [7]. Sablayrolles et al. [20] show that, to
provide membership privacy to zj , the log of the ratio of probabilities of obtaining the same θ from
D and D′ should be bounded, i.e., (3) should be bounded.

log
∣∣∣ P(θ|D)

P(θ|D′)

∣∣∣ = |`(θ, zj)− `(θ, z′j)| . . .P(θ|D) ∝ exp(
∑
zi∈D

`(θ, zi)) (3)

(3) implies that, if θ was indeed trained on zj , then to provide membership privacy to zj , the loss of
θ on zj should be same as on any non-member sample z′j . DMP is built on this intuition and aims
to train a model with statistically close losses on the members and non-members. DMP achieves
this via knowledge transfer and restricts the direct access of its final models to the private data and
significantly reduces the membership information leakage about the private data. DMP’s final mod-
els have superior utility due to the well-established efficiency of knowledge transfer in producing
student models with accuracies close to teacher models.
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Figure 1: Three phases (described alongside) of our
Distillation for Membership Privacy (DMP) defense.

Details of the DMP technique. We now de-
tail our DMP defense depicted in Figure 1.
In pre-distillation phase (step-1 Figure 1),
DMP trains an unprotected model, θup, on
the private training data, Dtr, using standard
SGD optimizer, e.g., Adam. Such unpro-
tected θup is highly susceptible to MIA due
to large generalization error, i.e., difference
between train and test accuracies [24, 28].

Next, in distillation phase (step-2.1 Fig-
ure 1), DMP obtains the reference data,Xref,
required to transfer the knowledge of θup in
the final protected model, θp. Note that, Xref

is unlabeled and cannot be used directly for any learning. Then, we compute soft labels of Xref, i.e.,
θXref
up = θup(Xref) (step-2.2 Figure 1).

Finally, in Post-distillation phase (step-3 Figure 1), DMP trains a protected model θp on (Xref, θ
Xref
up )

using the Kullback-Leibler divergence loss based optimization in (4) In (4), y is the target soft label.

θp = argmin
θ

1

|Xref|
∑

(x,y)∈(Xref ,θ
Xref
up )

LKL(x,y) . . .LKL(x,y) =

c−1∑
i=0

yi log
( yi
θp(x)i

)
(4)

Due to KL-divergence loss in (4), the resulting model, θp, perfectly learns the behavior of θup on the
Xref . Furthermore, Xref being a representative non-member data, i.e., test data, we expect that the
test accuracies of the final DMP model, θp, and the unprotected model, θup, are close [3, 19].
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Figure 2: The lower the entropy of predictions of θup
on Xref , the higher the membership privacy.

Fine-tuning the DMP defense. Selecting
the appropriate reference data, Xref , is im-
portant to achieve the desired privacy-utility
tradeoffs in DMP. To this end, we give an
interesting result in Proposition 1.

Proposition 1. Consider θup trained on a
private Dtr. Then, the membership leakage
about Dtr through predictions θup(Xref) can
be reduced by selecting/generating Xref that
are far from Dtr in the input feature space
and whose predictions, θup(Xref), have low
entropies.

Intuitively, such reference data are easy to classify and none of the members of the private Dtr
significantly affects their predictions, and therefore, these predictions do not leak membership in-
formation of any particular member. Due to space limitations, we defer the proof to the full version
of this work. In Figure 2, we empirically verify Proposition 1 using Purchase dataset [18]: Figure 2
(left) shows the increase in the MIA risk and Figure 2 (right) shows the increase in the classification
performance of θp with the increase in average entropy of the predictions of unprotected model, θup,
on the reference data, Xref , used.

4 Evaluations

Experimental setup. We evaluate DMP on four datasets and corresponding model architectures
that are consistent with the previous works [24, 14, 13]: Purchase dataset [18], Texas hospital
dataset [1], CIFAR10 and CIFAR100 [12]. We measure the membership privacy due to various
defenses as the accuracy of three state-of-the-art whitebox and blackbox attacks proposed in [14],
and entropy-based blackbox attack proposed in [28]; we denote the attack accuracies by Awb, Abb,
and Abl, respectively. Additional experimental details are in Appendix A.1.
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Table 1: Models trained without any defenses have high test accuracies, Atest, but their high gener-
alization errors, Egen (i.e., Atrain −Atest) facilitate high membership inference risks.

Dataset + model (Acronym) No defense
Egen Atest Awb Abb Abl

Purchase + FC (P-FC) 24.0 76.0 77.1 76.8 63.1
Texas + FL (T-FC) 51.3 48.7 84.0 82.2 76.1

CIFAR100 + Alexnet (C100-A) 63.2 36.8 90.3 91.3 81.8
CIFAR100 + DenseNet-12 (C100-D12) 33.8 65.2 72.2 71.8 67.5
CIFAR100 + DenseNet-19 (C100-D19) 34.4 65.5 82.3 81.6 68.1

CIFAR100 + Alexnet (C10-A) 32.5 67.5 77.9 77.5 66.4

Table 2: Comparing test accuracy, Atest, and generalization error, Egen, of DMP and Adversar-
ial Regularization, for near-equal, low MIA risks (high membership privacy). A+

test shows the %
increase in Atest of DMP over Adversarial Regularization.

Dataset Adversarial regularization (AdvReg) DMP
and

Egen Atest
Attack accuracy

Egen Atest A+
test

Attack accuracy
model Awb Abb Abl Awb Abb Abl

P-FC 9.7 56.5 55.8 55.4 54.9 10.1 74.1 +31.2% 55.3 55.1 55.2
T-FC 6.1 33.5 58.2 57.9 54.1 7.1 48.6 +45.1% 55.3 55.4 53.6

C100-A 6.9 19.7 54.3 54.0 53.5 6.5 35.7 +81.2% 55.7 55.6 53.3
C100-D12 5.5 26.5 51.4 51.3 52.8 3.6 63.1 +138.1% 53.7 53.0 51.8
C100-D19 7.2 33.9 54.2 53.4 53.6 7.3 65.3 +92.6% 54.7 54.4 53.7

C10-A 4.2 53.4 51.9 51.2 52.1 3.1 65.0 +21.7% 51.3 50.6 51.6

4.1 Experimental results

Comparison with regularization techniques. Regularization improves the generalization of ML
models, and hence, reduce the MIA risk [24]. Hence, we compare DMP with four regularization
defenses, including the state-of-the-art MIA defense—adversarial regularization [13]. Table 1 shows
accuracies of models trained without any defense. Note that, CIFAR models have lower than state-
of-the-art accuracies due to smaller training datasets.

Comparisons with adversarial regularization (AdvReg). Table 2 compares Atest of DMP and Ad-
vReg models, for similar MIA accuracies (i.e., membership privacy). As expected, these models
also have similar Egen’s. However, Atest of DMP models is significantly higher than AdvReg mod-
els; A+

test column shows the % increase in Atest due to DMP over AdvReg: Accuracy improvements
due to DMP over AdvReg are close to 100% for CIFAR-100, and 20% to 45% for other datasets.
AdvReg uses accuracy of an MIA model to regularize and train its target models to fool the MIA
model. However, AdvReg allows its target models to directly access Dtr. Hence, to effectively fool
the MIA model, it puts relatively large weight on the regularization-loss term. This reduces the im-
pact of the loss on main task and reduces the accuracy of AdvReg models. DMP uses appropriate
reference data to transfer the knowledge of Dtr to its target models without allowing them direct
access. Hence, DMP significantly outperforms AdvReg in terms of privacy-utility tradeoffs.

Comparisons with other regularizers. Next, we compare DMP with four state-of-the-art regulariz-
ers: weight decay (WD), dropout [26] (DR), label smoothing [27] (LS), and confidence penalty [17]
(CP). Table 4 (Appendix A) shows the results, when MIA risks of regularized models is close that
of DMP models (Table 2). We note that, in all the cases, Atest of DMP are significantly higher (up
to 385% increase as A+

test column specifies) than Atest of other regularizers. This is because, these
regularizers aim to improve the test accuracies of target models, but are not designed to reduce MIA
risk. Thus, to reduce MIA risk, these regularization techniques add large, suboptimal noises during
training, and hurt the utility of resulting models.

Comparisons with differentially private defenses. In Appendix A.2, we compare DMP with two
state-of-the-art differentially private defenses, DP-SGD [2] and PATE [15], and demonstrate the
superior membership privacy-utility tradeoffs of DMP over these defenses. Our comparisons with
DP-based defenses emphasize the results of Jayaraman et al. [11], who study various DP-based
defenses in depth and show that they fail to produce model with acceptable tradeoffs.
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5 Conclusions
We proposed Distillation for Membership Privacy (DMP), a knowledge distillation based defense
against membership inference attacks that significantly improves the membership privacy-model
utility tradeoffs compared to state-of-the-art defenses. We provided a novel criterion to generate/se-
lect reference data in DMP and achieve the desired tradeoffs. Our extensive evaluation demonstrated
the state-of-the-art privacy-utility tradeoffs of DMP. We believe our study highlights an important
aspect of knowledge transfer: apart from its use as a sole membership inference defense, its sim-
plicity can allow other defenses to incorporate knowledge transfer to improve their privacy-utility
tradeoffs, which currently limits their use in practice.
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A Appendix

A.1 Experimental Setup

A.1.1 Datasets and target model architectures

We use four datasets and corresponding model architectures that are consistent with the previous
works (Shokri et al. [24]; Nasr et al. [14, 13]; Salem et al. [21]).
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Purchase [18] is a 100 class classification task with 197,324 binary feature vectors of length 600;
each dimension corresponds to a product and its value states if corresponding customer purchased
the product; the corresponding label represents the shopping habit of the customer.

Texas is dataset of patient records. It is a 100 class classification task with 67,300 binary feature
vectors of length 6,170; each dimension corresponds to symptoms and its value states if correspond-
ing patient has the symptom or not; the label represents the treatment given to the patient. For
Purchase and Texas we use fully connected (FC) networks.

CIFAR10 and CIFAR100 [12] are popular image classification datasets, each has size 50k and
32 × 32 color images. We use Alexnet, DenseNet-12 (with 0.77M parameters), and DenseNet-19
(with 25.6M parameters) models for CIFAR100, and Alexnet for CIFAR10. Following previous
works, we measure the test accuracy of the target models as their utility.

Sizes of dataset splits. The dataset splits are given in Table 3. For Purchase and Texas tasks, we
use Dref of size 10k and select Xref of size 10k from the remaining data using our entropy-based
criterion. For CIFAR datasets, we use Dref of size 25k and due to small sizes of these datasets,
use the entire remaining 25k data as Xref . The ‘Attack training’ (described shortly) column shows
the MIA adversary’s knowledge of members and non-members of Dtr. Following all the previous
works, we assume that the adversary knows 50% of Dtr. Further experimental details are provided
in Appendix.

Table 3: All the dataset splits are disjoint. D, D′ data are the members and non-members of Dtr
known to MIA adversary.

Dataset DMP training Attack training
|Dtr| |Xref| |D| |D′|

Purchase (P) 10000 10000 5000 5000
Texas (T) 10000 10000 5000 5000

CIFAR100 (C100) 25000 25000 12500 8000
CIFAR10 (C10) 25000 25000 12500 8000

A.1.2 Membership inference attacks

We briefly review the four MIAs we use for evaluations. Following previous works, we use the
accuracy of MIAs on target models as a measure of their membership privacy.

Bounded loss (BL) attack [28] decides membership using a threshold on the target model’s loss
on the target sample. When 0-1 loss is used, the attack accuracy is simply the difference in training
and test accuracy of target model. We denote BL attack accuracy by Abl.

NSH attacks (Nasr et al. [14]) are similar to NN attacks. They concatenate various whitebox (e.g.,
model gradients) and/or blackbox (e.g., model loss, predictions) features of target model, while
NN attack uses only the target model predictions. We denote whitebox and blackbox NSH attack
accuracies by Awb and Abb, respectively. For NN and NSH attacks, we use the same attack models
the original works.

A.2 Comparison with differentially private defenses

A.2.1 Comparison with DP-SGD.

Following the methodology of Jayaraman et al. [11], we compare DMP and DP-SGD [2] using the
empirically observed tradeoffs between membership privacy (MIA resistance) and Atest of models.
We use only CIFAR10 for these experiments, as the DP-SGD achieves prohibitively low accuracies
on difficult tasks such as Texas and CIFAR100. We evaluate MIA risk using the whitebox NSH
attack. Table 5 shows the results of Alexnet trained on CIFAR10 using DMP and DP-SGD with
different privacy budgets ε’s; -ve Egen implies Atrain is lower than Atest. DP-SGD incurs significant
(35%) loss in Atest at lower ε (12.5) to provide strong membership privacy. At higher ε, Atest

of DP-SGD increases, but at the cost of very high generalization error, which facilitates stronger
MIAs. Note that, further increase in privacy budget, ε, does not improve tradeoff of DP-SGD.
More importantly, for low MIA risk of ∼ 51.3%, DMP models have 12.8% higher Atest (i.e., 24.5%
improvement) than DP-SGD models, which shows the superior tradeoffs due to DMP.
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Table 4: Evaluating three state-of-the-art regularizers, with similar, low MIA risks (high member-
ship privacy) as DMP. A+

test shows the % increase in Atest due to DMP over the corresponding
regularizers.

Purchase + FC (DMP’s Atest = 74.1)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 10.3 42.5 +74.4% 54.9 55.4 55.2

WD + DR 9.1 42.1 +76.0% 56.4 56.8 54.6
WD + LS 12.3 42.0 +76.4% 57.2 57.0 56.2

Texas + FC (DMP’s Atest = 48.6)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 5.0 22.5 +116% 58.3 57.7 52.5

WD + DR 6.1 14.2 +242% 63.1 62.6 53.1
WD + LS 8.3 37.3 +30% 61.7 61.0 54.2

CIFAR100 + DenseNet-12 (DMP’s Atest = 63.1)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 4.0 26.3 +140% 49.9 49.7 52.0

WD + DR 3.7 32.3 +95.4% 51.2 51.0 51.9
WD + LS 2.7 13.0 +385% 51.0 51.4 51.4

CIFAR10 + Alexnet (DMP’s Atest = 65.0)
Regularizer Egen Atest A+

test Awb Abb Abl
WD 4.1 45.9 +41.6% 52.4 52.5 52.1

WD + DR 3.2 44.7 +45.4% 51.9 51.7 51.6
WD + LS 4.8 53.2 +22.2% 53.8 53.0 52.4

Table 5: DP-SGD versus DMP for CIFAR10 and Alexnet. For low MIA risk of ∼ 51.3%, DMP
achieves 24.5% higher Atest than of DP-SGD (12.8% absolute increase in Atest).

Defense Privacy
Egen Atest Awbbudget (ε)

No defense – 32.5 67.5 77.9
DMP – 3.10 65.0 51.3

DP-SGD

198.5 3.60 52.2 51.7
50.2 1.30 36.9 50.2
12.5 0.30 31.7 50.0
6.8 -1.60 29.4 49.9

A.2.2 Comparison with PATE.

PATE [15], a semi-supervized learning technique, requires a compatible pair of generator and
disciminator to achieve acceptable performances. Hence, we use CIFAR10 dataset and, instead
of Alexnet, use the generator-discriminator pair from [22], which has state-of-the-art performances.
PATE trains a set of teachers, computes hard labels of each teacher on some Xref , aggregates the
labels for each x ∈ Xref using majority voting, adds DP noise to the aggregate, and finally trains its
target model on the noisy aggregate.

We train ensembles of 5, 10, and 25 teachers using Dtr of sise 25k. We use the optimized confident-
GNMax (GNMax) aggregation scheme of [16] to label Xref We present the results in Table 6. At
low ε’s (<10), GNMax hardly produces any labels, hence, the final target model has very low Atest,
but at higher ε’s (>1000), PATE target model has acceptable Atest. However, PATE cannot achieve
performances even close to DMP, as it divides Dtr among its teachers. Such teachers have low
accuracies and their ensemble cannot achieve the accuracy close to that of the unprotected model
of DMP, which is trained on the entire Dtr. Hence, the quality of knowledge transferred in DMP is
always higher than that in PATE.
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Table 6: Comparing PATE with DMP. DMP hasEgen,Atest, andAwb of 1.19%, 76.79%, and 50.8%,
respectively. PATE has low accuracy even at high privacy budgets, as it divides data among teachers
and produces low accuracy ensembles.

# of Queries Privacy Target model
AwbTeachers answered budget (ε) Egen Atest

5 49 195.9 31.4 33.9 49.1
1163 11684 65.4 68.1 49.0

10 23 42.9 39.1 38.3 50.1
1527 6535 63.9 65.2 49.8

25 108 183.5 53.8 55.7 49.0
4933 1794.1 57.8 60.3 48.6
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