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Abstract

We propose an improved private count-mean-sketch
data structure and show its applicability to dif-
ferentially private contact tracing. Our proposed
scheme (Diversifed Averaging for Meta estimation of
Sketches-DAMS) provides a better trade-off between
true positive rates and false positive rates while main-
taining differential privacy (a widely accepted formal
standard for privacy). We show its relevance to the
social good application of private digital contact trac-
ing for COVID-19 and beyond. The scheme involves
one way locally differentially private uploads from the
infected client devices to a server that upon a post-
processing obtains a private aggregated histogram of
locations traversed by all the infected clients within
a time period of interest. The private aggregated his-
togram is then downloaded by any querying client in
order to compare it with its own data on-device, to
determine whether it has come into close proximity of
any infected client or not. We present empirical exper-
iments that show a substantial improvement in perfor-
mance for this particular application. We also prove
theoretical variance-reduction guarantees of the esti-
mates obtained through our scheme and verify these
findings via experiments as well.

Introduction
Distributed applications involving multiple client enti-
ties often have stringent privacy requirements that are
governed by legal regulations such as HIPAA (Mercuri
2004), GDPR (Goddard 2017) and PIPEDA (Austin
2005). Such requirements are also necessitated by indi-
vidual preferences, ethical guidelines, national security
interests and for seamlessly enabling partnerships in a
rapidly globalizing society. One such societal applica-
tion; that has recently come under the spotlight of pri-
vacy researchers given the global advent of the recent
COVID-19 pandemic, is that of private digital contact
tracing and exposure notification (Rivest et al. 2020;
Tang 2020; Chan et al. 2020; Martin et al. 2020;
Raskar et al. 2020; Fitzsimons et al. 2020; Hatke et al.
2020; Ahmed et al. 2020; Cho, Ippolito, and Yu 2020;
Reichert, Brack, and Scheuermann 2020; Altuwaiyan,
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Figure 1: Private contact tracing refers to the prob-
lem of privately ascertaining whether a querying client
has come into close proximity of any patient that is an
infected carrier. Our proposed scheme involves a one-
way upload of locally differentially private (local DP)
informmation into the server that is downloaded by any
client performing a contact tracing.

Hadian, and Liang 2018; Greiner et al. 2015). As shown
in Figure 1, this refers to the problem of privately
ascertaining whether a querying client has come into
close proximity of an infected patient to privately no-
tify the querying user with an obtained result. Cur-
rently cryptographic methods and differential privacy
(Dwork, Roth, and others 2014; Dwork 2008; McSherry
and Talwar 2007; Dwork and Smith 2010) are one of
the widely accepted mathematical notions of formal pri-
vacy with varying levels of adoption for different appli-
cations. For example, the next U.S census (Abowd 2018;
Abowd et al. 2019) is being privatized via differen-
tial privacy while several end to end encrypted mes-
saging platforms are powered by cryptographic tech-
niques. With respect to private digital contact tracing,
several apps have recently been released and are are
currently based on cryptographic schemes (Rivest et
al. 2020; Chan et al. 2020; Beskorovajnov et al. 2020;
Trieu et al. 2020; Singh et al. 2020; Berke et al. 2020;
Chen and Hu 2020; Liu et al. 2020) such as secure
multi-party computation (secure MPC), homomorphic
encryption and public-key cryptosystems. In this paper,
we propose one of the earliest solutions (to the best of
our knowledge) for contact tracing that is instead based
on differential privacy.

Works such as (Groce, Rindal, and Rosulek 2019)



have shown that differentially private technologies can
drastically reduce the computational and communica-
tion costs of large-scale systems compared to crypto-
graphic technologies albeit at a weaker trade-off with
privacy. A recent trend has been to build systems
that depend on both differential privacy and crypto-
graphic technologies at the same time (Wagh et al. 2020;
Chowdhury et al. 2019) for better performance guaran-
tees. Thereby having a differentially private solution to
contact tracing can have a downstream benefit from
such efforts as well. All of our codebase will be made
available as described in the ethics statement.

Contributions
1. We propose the first differentially private solution

to COVID-19 contact tracing using sketching data
structures.

2. We propose a new meta-estimator (DAMS) based on
the private count-min sketch data structure and ap-
ply it to private digital contact tracing. We evaluate
its performance over important baselines on multiple
real-life trajectory datasets of human mobility with
respect to the classification metrics of private digital
contact tracing. We empirically show that our meta-
estimator performs at a drastically higher true pos-
itive rate (TPR) with a relatively much lower false
positive rate (FPR) in comparison to these baselines.

3. We theoretically show that our meta-estimator (Pri-
vate DAMS) is unbiased, and has lower variance than
that of private count-mean-sketch (PCMS).

Related work
We categorize works related to this paper into three
categories of: private digital contact tracing, local dif-
ferential privacy and private sketching methods.

Private digital contact tracing methods
There has been a rapid flurry of mobile apps released
globally for digital contact tracing with varying levels
of privacy protections. Within this space, a majority of
deployed solutions or the ones that are undergoing rapid
refinements are cryptography based as categorized in
Table 1.

Differential privacy has been another popular ap-
proach for formal privacy. For example, it is being
used to privatize the 2020 U.S census (Abowd 2018;
Abowd et al. 2019) that is currently underway. There
has not been much work at the intersection of differ-
ential privacy and contact tracing as yet, as shown in
this table. DAMS for private contact tracing is instead
based on differential privacy to help further the research
on private digital contact tracing from a different view-
point.
Local differential privacy
We employ the local differential privacy setting (Cor-
mode et al. 2018; Cormode, Kulkarni, and Srivastava
2018; Joseph et al. 2019; Kairouz, Oh, and Viswanath

2014), where privacy is maintained locally at the client
level. In this version, a privatized dataset is released
from a client and a post-processing is applied re-
motely over this privatized dataset on a server or an-
other client in order to complete analysis/model train-
ing/inference over that dataset. A weaker, yet relatively
similar setting to local differential privacy is called ‘non-
interactive private data release’ (Chanyaswad, Liu, and
Mittal 2019; Smith, Thakurta, and Upadhyay 2017) .
The key difference is that in local differential privacy,
each data owner; for e.g. an individual iPhone user, pri-
vatizes his/her data before sending it out for any post-
processing as against to non-interactive differential pri-
vacy that requires a trusted centralized unit who sees
the original data (not the privatized version); for e.g.
everyone’s keyboard input data. Then, the trusted cen-
tralized unit privatizes the data before releasing them
to the public.
Sketching methods
Sketching methods are popular for streaming data anal-
ysis, efficient information retrieval, and large scale ma-
chine learning. These techniques typically involve a dic-
tionary of multiple hash functions used to hash the
dataset into a table or data structure. In order to ob-
tain the solution to any specific query such as frequency
estimation, inner-product search or range estimation; a
post-processing function corresponding to that partic-
ular query is applied on the data structure in order to
efficiently obtain the result. Bloom filters (Broder and
Mitzenmacher 2004) are one of the earliest such ran-
domized data structures. Other examples of sketching
methods (Indyk 2007; Braverman and Ostrovsky 2013;
Andoni et al. 2009; Pilanci and Wainwright 2015) in-
clude Hadamard sketch (Team 2017), Broder’s Sketch
(Broder 2000), MinHash (Shrivastava and Li 2014; Ioffe
2010), AMS Sketch (Alon, Matias, and Szegedy 1999)
and Count-Min-Sketch (Cormode and Garofalakis 2007;
Cormode and Muthukrishnan 2005). Differential pri-
vate versions of some of these skectching methods like
(Team 2017; Erlingsson, Pihur, and Korolova 2014)
exist. We modify this private count-mean-sketch data
structure to obtain a better trade-off in terms of the
true positive rate (TPR) and false positive rate (FPR)
upon testing it on contact tracing usecases.

Preliminaries
Notation: The notation used in this paper is summa-
rized for ease of reference in Table 2.
Definition 1 (ε-Local Randomizer (Dwork, Roth, and
others 2014)). Let A : D 7→ Y be a randomized al-
gorithm mapping a data entry in data domain D to
Y . The algorithm A is an ε-local randomizer if for all
data entries d, d′ ∈ D and all outputs y ∈ Y , we have
−ε ≤ ln

(
Pr[A(d)=y]
Pr[A(d′)=y]

)
≤ ε.

Definition 2 (Local Differential Privacy (Dwork, Roth,
and others 2014; Team 2017)). Let A : Dn 7→ Z
be a randomized algorithm mapping a dataset with n



Cryptographic Differential Privacy
Spatio-temporal

differential privacy
for correlated data (non i.i.d)

Differential Privacy for
correlated data (non i.i.d)

Digital Contact Tracing

PACT, G.A.E.N,
PrivateKit-SafePaths

(now PathCheck), EpiOne, PPContactTracing,
TraceSecure, BlueTrace,

Blind Contact Tracing, DP3T,
ConTraCorona, CovidSafe,
StopCovid, CovidWatch,

DESIRE, Pronto-C2

Private DAMS
(Our Method) None None

Other applications Extensive work Extensive work
Geo-Indistinguishability,
UD-LMDP/UC-LMDP,

Planar Isotropic Mechanism,
PANDA, δ-location set DP

Correlated Iteration Mechanism,
PufferFish, LBS Queries

Bayesian Differential Privacy,
DDP

Table 1: We compare and categorize the proposed method within the current landscape of works on the private digital
contact tracing problem. Green refers to solutions that are already deployed or in an advanced stage of development.
Red refers to methods that are non-existant (referred by none), or not deployed within the context of private digital
contact tracing. Pastel yellow, refers to our proposed method that is currently a prototype that has gone beyond the
research stage as we plan to engineer it towards a controlled deployment, while we move on to create, adopt or build
upon works currently in red for the contact tracing problem as part of future research. The red areas under other
applications are very promising but need accelerated research for adopting them within the context of private digital
contact tracing. The orange areas refer to differential privacy methods for non i.i.d spatio-temporal data that exist,
but have not been adapted yet for contact tracing applications.

Depth k
Width m
Hash Dictionaries H1,H2, . . . ,Hp
Hash Functions h1, h2, . . . , hk
Privacy Parameter ε
Dataset Size (# of records) n
Dataset Dn = {d1, d2, . . . dn}
Hash Output v ∈ Rm
Post-Processing Function φ

Count Estimator f̃(d)
Bernoulli Noise Vector b ∈ {−1,+1, }m
# of Clients w
Histograms F1, F2 . . . Fp
Sketch Matrix M

Table 2: This is the notation used in this paper.

records to some arbitrary range Z. The algorithm A
is ε-local differentially private if it can be written as
A(d1, . . . , dn) = φ(A1(d1), . . . , An(dn)) where each Ai :
D 7→ Y is an ε- local randomizer for each i ∈ [n] and
φ : Yn 7→ Z is some post-processing function of the pri-
vatized records A1(d1), . . . , An(dn). Note that the post-
processing function does not have access to the raw data
records.

Private count-mean-sketch
The work in (Team 2017) provides a locally differ-
entially private mechanism called private count mean
sketch (PCMS) for privately releasing histograms. It is
based on a non private version of this data structure
(CMS) in (Cormode and Garofalakis 2007). PCMS has
a client-side algorithm and a server-side algorithm. The
client-side algorithm ensures the data that leaves the
user’s device is ε-local differentially private. In PCMS,
a local differential privacy is achieved on a client via

flipping the bits of any output v of hash function ap-
plied to a data record d with a Bernoulli noise vector
b ∈ {−1,+1}m, whose elements are picked with a prob-
ability of eε/2

eε/2+1 . This noised output is stored in a ma-
trix of dimension k×m called the sketch matrix. Here,
m (referred as depth) is the dimension of the output
of used hash functions and k is the number of hash
functions. A post-processing is applied on this table at
the server to obtain the private histogram as follows.
As noised vectors arrive from various clients, the server
adds the privatized vector to the vector at row j of a
server side version of the sketch matrix M, where j is
the index of the hash function sampled by the device.
The values of M are then scaled appropriately so that
each row helps provide an unbiased estimator for the
frequency of each element. To compute an estimate for
any input d ∈ D, the server-side algorithm then av-
erages the counts corresponding to each of the k hash
functions in M for d.

Method

In this section we propose a meta-estimator as an im-
provement to the private count-mean-sketch data struc-
ture in order to achieve a better trade-off between the
true positive rate and false positive rates when applied
to the problem of private contact tracing. In addition,
we show theoretical results that our meta-estimator
provides a variance reduction in comparison to the orig-
inal private count-mean-sketch data structure based es-
timator and we substantiate this via empirical results
as well. Before we describe the technical aspects of our
proposed meta-estimator, we walk through a detailed
example of any user’s interaction with our proposed pri-
vate contact tracing system.



Figure 2: Sketch of the local DP scheme for standard private count-mean-sketch. Note that this the client side
of the scheme that is prior to applying the server’s post-processing function. We contrast this with our proposed
meta-estimator in Figure 3.

Example roles of querying clients, infected
clients and server in the proposed system
• Infected clients: Infected clients upload a locally

differentially private version of their trajectories of
movement to a centralized server. To be precise, all
clients share an indexing to a spatial grid overlaid on
the map. There are efficient ways to maintain such
a global grid indexing using technologies like geo-
hashes (for square grid cells) or H3 geospatial grid
indexing (for hexagonal grid cells). Every trajectory
is reprsented by an indexing corresponding to a dis-
cretized version of the trajectory to several grid-cells.
The set of indexes corresponding to each category are
privatized using our proposed meta-estimator, and
shared with the server.

• Server: The server applies a post-processing function
to obtain a locally differentially private histogram of
counts of grid-cell indices traversed by all trajectories
of a client within a chosen time window. It sums up all
such private histograms obtained from each of the w
infected clients to obtain a single private aggregated
histogram.

• Querier clients: Any querier client would like to
check if it came into contact with an infected client
upto the resolution allowed by the grid-cells. It down-
loads the private aggregated histogram from the
server onto its device and matches it with its own tra-
jectory data and looks for counts beyond a threshold
while also accounting for its own repeat visits.

Meta-estimator: Diversified averaging for
meta-estimation of private sketches
(DAMS)
We now describe our DAMS scheme that is also illus-
trated in Figure 3 The steps can be summarized as fol-
lows.
• Step 1: Every infected client generates p private

sketches of their raw data, where each version (or
run) differs in terms of the dictionary of hash func-
tions Hi used. Each private sketch is done using the
private count-mean-sketch estimator. These p private
sketches per client are sent to the server. Note that
in addition, we also divide the spatio-temporal region

Algorithm 1 DAMS
for Infected Clients t ∈ [w] do

For each r ∈ [p],
compute grt = PrivateClientCMS(Dt, εt,Hr) on-
device.

Send sketches g1
t , g

2
t , . . . g

p
t to Server

ServerUpdate(g1
t , g

2
t , . . . g

p
t ):

for t ∈ [w] do
Estimate histograms F 1

t = φ(g1
t ), . . . F pt = φ(gpt )

Compute average histogram Fµt =
∑p

i=1
F it

p

Compute aggregate of average histograms
Fagg = Fµ1 + Fµ2 + . . . Fµw
Send Fagg to QuerierClient

QueryClient Check:
Matches its data with non-zero counts in Fagg greater
than a threshold for contact tracing result (excludes
self-repeats).

under study into serveral large zones; where each zone
has its own hash dictionary that changes from run to
run. This helps filter and quantize the data record
down to a zone before using its hash dictionary.

• Step 2: The server applies its post-processing func-
tion on each of these private sketches to generate a
private histogram. These p private histograms are av-
eraged to get a final private histogram per client.
Since there are w clients, a total of w private his-
tograms are obtained at the server. The server now
adds these w histograms to obtain one aggregated
private histogram.

• Step 3: This aggregated histogram is downloaded
by any querying client that would like to check if
it has come into contact (close proximity) with an
onfected client. The querying client checks if any of
its movement trajectories match with the non-zero
counts in the aggregated histogram beyond a thresh-
old of counts after accounting for its own repeat vis-
its. This helps the querying client obtain the final
result of contact tracing on-device.
These steps are presented in the Algorithm 1 block



Figure 3: Illustration of our proposed meta-estimation scheme where each infected client device performs p sketches
of its data using the private count-mean-sketch data structure, where each sketch is performed with a completely
different dictionary of hash functions. The p intermediate result obtained from each client is said to the server, where
they are post-processed to obtain p private histograms that are averaged to finally obtain one histogram per client.
These are all aggregated to obtain one single histogram that is shared with the querying user for matching with its
own data on-device to get the result of contact tracing.

presented above. Although we show empirically in the
experimental section that our modified scheme tremen-
dously improves the true positive rate of contact trac-
ing while substantially reducing the false positive rate;
it goes without saying that there is no free lunch. The
trade-off of this increased utility happens at a reduction
in privacy, precisely to an extent that we now describe.
That said, we show that the constants that influence
this utility-privacy trade-off are reasonably under con-
trol, in empirical experiments. In step 2 above, if ev-
ery client releases each one of the p histograms with
εi- differential privacy, then due to the sequential com-
position property (Dwork, Roth, and others 2014) of
differential privacy, each averaged histogram from ev-
ery client has pεi- differential privacy. Similarly, due to
the parallel composition property (Dwork, Roth, and
others 2014) of differential privacy, the aggregated pri-
vate histogram has max(pεi)-differential privacy,∀i ∈
{1, 2, . . . , w}. These are illustrated in Figure 3 as well.
Variance reduction guarantees and
important baselines
We now compare the variance under the following three
scenarios
• Scenario I The scenario of using ε = pε′ with the

algorithm being run once with one set of hash func-
tions. This is equivalent to the privacy level obtained
when the same set of hash functions are used across
p runs of the algorithm on the same dataset due to
the sequential composition property (Dwork, Roth,
and others 2014) of differential privacy. This is an
important baseline to compare against in order to
confirm that changing the hash function dictionary
across multiple runs (# of runs = p), is a better op-
tion than performing one single run with one hash
function dictionary; yet with an equivalent level of
privacy. We would like to note that, even when p = 1,
there is a difference in hash dictionaries used across
different zones that the region of interest is divided
into; as explained in Step 1 of our method in the
previous section.

• Scenario II The scenario of using ε = ε′, while the
algorithm is run q times using a same dictionary
of hash functions in each of the run as part of the
private count-mean-sketch algorithm. The final result
is obtained as the average of the estimate counts. This
is an important baseline to compare against in order
to confirm that changing the hash function dictionary
across each of the p runs, is a better option than
keeping them same across the p runs.

• Scenario III The scenario of using ε = ε′, while the
algorithm is run q times using a different dictionary
of hash functions in each of the run as part of the
private count-mean-sketch algorithm. The final result
is obtained as the average of the estimated counts. We
refer to this option as our proposed private DAMS
estimator.

Theorem 1. Private DAMS estimator in scenario III
has a lower variance than the estimator in scenario I
when ε > 2.

Proof. f̃(d) is the estimated frequency of data element
d and its variance in the standard differentially private
count-mean-sketch scheme is given by (Team 2017).

Var [f̃(d)] = n(c2
ε − 1)/4 + n− f(d)

m

(
1− 1

m
− 1
k

+ 1
km

)

+
(

1
km
− 1
km2

)∑
d∗ 6=d

f(d∗)2


(1)

Here f(d∗) ∈ D is the original frequency of the element
d∗ and D is the dataset, n is the number of data points,
k is the depth of the CMS-data structure,m is the width
and cε = eε/2+1

eε/2−1 .
We now show the variance of the count estimator

obtained in each of the above estimators. In scenario I,
we have the following expression for the vaiance upto a



constant C that is independent of ε.

Var [f̃(d)] = n(c2
pε′ − 1)/4 + n− f(d)

m

(
1− 1

m
− 1
k

+ 1
km

)

+
(

1
km
− 1
km2

)∑
d∗ 6=d

f(d∗)2


= n(c2

pε′ − 1)/4 + C

(2)

In scenario III, now since all the hash functions
across the p runs are three-wise independent, we
have Var f̃(d) = Var [f̃1(d)]+Var [f̃2(d)]+...+Var [f̃p(d)]

p2 where
Var f̃i(d) is the variance of an individual run. But
since we use the same k, n,m across runs although
the hash function dictionaries are the same, we have
Var f̃(d) = n(c2

ε′ − 1)/4 +C Note that there is a reduc-
tion from 1/p2 to 1/p due to equality of variances.
To complete the proof, we would need to show that,
1
p

[
n(c2

pε′ − 1)/4 + C
]
≤ n(c2

pε′ − 1)/4 +C. Substituting
cε = eε/2+1

eε/2−1 = 1 + 2
eε/2−1 , we would need to show that

1
p

[
n

4

[
1 + 2

eε/2 − 1

]2
+ C

]
≤ n

4

[
1 + 2

epε/2 − 1

]2
+ C.

For ε′ > 2, we have cε is approximately ≤ 4 and there-
fore 1

p

[
n
4

[
1 + 2

eε/2−1

]2
+ C

]
≤ 1

p [4n + C]. Upon sub-
stituting the same into the r.h.s of the inequality we
get 1

p [4n+C] ≤ n
4 +C that can be trivially satisfied by

choosing values of p that satisfy this inequality.

Lemma 1. Private DAMS estimator is unbiased.

Proof. E f̃(d) = E[f̃1(d)]+E[f̃2(d)]+...+E[f̃p(d)]
p where

E f̃i(d) is the expectation of an individual run. Each of
the individual estimators in the numerator is unbiased
as the differentially private count-mean-sketch estima-
tor that was used is unbiased (Team 2017). Therefore
the private DAMS estimator is unbiased.

Theorem 2. The variance of the estimator of private
DAMS in scenario III is less than the variance of the
estimator in scenario II.

Proof. In scenario II, without loss of generality,
when p = 2 we have Var f̃(d) =

∑
i

Var [f̃i(d)]
p2 +

2
∑
ij Cov(f̃i(d), f̃j(d)) where Var f̃i(d) is the variance

of an individual run and Cov(f̃i(d), f̃j(d)) is the covari-
ance. Since, we use 3-wise independent hash functions
(Team 2017) as suggested in the standard differentially
private count-mean-sketch estimator in (Team 2017),
the covariance when i 6= j is 1

m −
1
m2 while it is 0,

when i = j. Now, 1
m −

1
m2 is always positive for non-

zero integer values of m. Therefore all the covariances

show positive correlation in this case and the sum of
covariances is of the order

q( 1
m
− 1
m2 )(2p− 1)

. Therefore, the variance of scenario III is always lesser
than scenario II. Without loss of generality, this holds
when p > 2 as well.

Experiments
Microsoft GeoLife GPS Trajectory Dataset
This GPS trajectory dataset (Zheng et al. 2008; 2010;
2009) is a massive dataset that was collected in (Mi-
crosoft Research Asia) Geolife project by 178 users in a
period of over four years (from April 2007 to October
2011). A GPS trajectory of this dataset is represented
by a sequence of time-stamped points, each of which
contains the information of latitude, longitude and al-
titude. This dataset contains 17621 trajectories with a
total distance of 1,251,654 kilometers and a total dura-
tion of 48,203 hours. A subset of this dataset was used
for a detailed evaluation with 50 trajectories labeled as
infected patient trajectories and one was labeled as a
querier trajectory. Each trajectory was of length 720.
Therefore 51× 720 = 36720 datapoints were used to be
processed through our private DAMS data structure.

GoTrack GPS trajectories dataset
This dataset is available on the UCI repository and we
use a formatted subset of the dataset where querier tra-
jectories intersect with some infected patient trajecto-
ries in 336 co-ordinates among 1123 co-ordinates and
unlike the above experiment, the trajectory length of
each participant is not the same in this dataset.

Empirical evaluation
Private DAMS Vs. PCMS: We compare our ap-
proach of private DAMS with p = 1, where each zone
has a different hash dictionary Vs. with the standard
private count-mean-sketch (PCMS-1 as in scenario I)
with p = 1 as shown in Figures 4 and 7. In PCMS,
each zone has the same dictionary. The comparison is
in terms of the important metrics of true positive rates
(TPR), false positive rates (FPR), F1 score and MCC
score of contact tracing received at querier client, with
respect to the ground truth of intersections. Note that
the x-axis refers to the different values of ε considered
between 2.5 to 7, with increasing values of 0.5. That
said, it is important to note that all the ε′s reported on
the x-axis are the corresponding values obtained after
accounting for the sequential and parallel composition
laws of differential privacy in our scheme as described
in Figure 3.
Effectiveness of p > 1 in DAMS: We also compare
our approach private DAMS with p = 5 (DAMS-5) and
p = 10 (DAMS-10) against scenario - II for p = 5 (CMS-
5) and p = 10 (CMS-10) runs. These results are shown
in Figures 5,6,8 and 9. We observe a greater TPR in
each of the DAMS results in comparison to the CMS



Figure 4: GeoLife GPS: TPR of
DAMS Vs. PCMS for p = 1

Figure 5: GeoLife GPS: TPR of
DAMS Vs. PCMS for p = 5

Figure 6: GeoLife GPS: TPR of
DAMS Vs. PCMS for p = 10

Figure 7: GeoTrack GPS: FPR of
DAMS Vs. PCMS for p = 1

Figure 8: GeoTrack GPS: FPR of
DAMS Vs. PCMS for p = 5

Figure 9: GeoTrack GPS: FPR of
DAMS Vs. PCMS for p = 10

Figure 10: GeoLife GPS: TPR
trend in DAMS for p = 1, 5 and 10

Figure 11: GeoLife GPS: F1 score
across DAMS and PCMS for

p = 1, 5 and 10

Figure 12: GeoLife GPS: MCC
score across DAMS and PCMS for

p = 1, 5 and 10

Figure 13: GeoTrack GPS: FPR
trend in DAMS for p = 1, 5 and 10

Figure 14: GeoTrack GPS: F1
score across DAMS and PCMS for

p = 1, 5 and 10

Figure 15: GeoTrack GPS: MCC
score across DAMS and PCMS for

p = 1, 5 and 10



results as desired. Similarly we observe a lower FPR in
each of the DAMS results in comparison to the CMS
results as desired.
Variance reduction with DAMS: In addition, we
observe that the variance across the obtained FPR’s
are significantly lower in the DAMS results in compar-
ison to the CMS results although the change in vari-
ances in case of the TPR’s is not as significant. We
note that the denominator in computing the FPR’s is
way larger than that of the denominator in computing
TPR over this dataset. Therefore the overall variance
reduction is significant. In Figure 10, we compare the
effect of increasing p over our proposed DAMS scheme.
We note that the TPR increases wuth increasing p, al-
though the increase begins to flatten out with larger p’s.
That said with increasing p, the FPR’s mildly increase
in the DAMS scheme as shown in Figure 13. Note that
regardless of this effect, the TPR’s and FPR’s of DAMS
outperforms CMS for all three p’s that were tried, as in
for p = 1, p = 5 and p = 10.
Data imbalance As the datasets are highly imbal-
anced (and so is the usecase of contact tracing), in
terms of having a much smaller number of intersections
as against the number of non-intersections between the
trajectories of querier clients and infected clients, we
therefore also compare the different versions of DAMS
and CMS in terms of F1 scores and MCC scores, that
are better suited for such settings. These results are
presented in Figures 11, 12, 14 and 15.

Future research
As part of suggested future work, we give credence
to the non i.i.d (non independent and identically dis-
tributed) nature of the problem in contact tracing as
our proposed solution could be further improved using
differential privacy primitives that are well-suited for
dependent/correlated data. These notions of modified
differential privacy for non i.i.d data (Chatzikokolakis,
Palamidessi, and Stronati 2015; Liu, Chakraborty, and
Mittal 2016; Andrés et al. 2013) are currently at an
early stage of the research horizon. We believe that first
investigating the digital private contact tracing prob-
lem through the lens of differental privacy under the
relatively simpler assumption of i.i.d data is beneficial
to carry forward the learnings obtained into the more
stringent settings of non i.i.d data as shown in the Ta-
ble 1 in red. Other location based COVID-19 privacy
projects such as (Research 2020) by Facebook, also as-
sume i.i.d’ness to support solutions with simplistic as-
sumptions at first.
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