
A Shuffling Framework for Local Differential Privacy
Author(s)

Institution(s)

ABSTRACT
LDP deployments are vulnerable to inference attacks as an adver-

sary can link the noisy responses to their identity and subsequently,

auxiliary information using the order of the data. An alternative

model, shuffle DP, prevents this by shuffling the noisy responses

uniformly at random. However, this limits the data learnability –

only symmetric functions (input order agnostic) can be learned.

In this paper, we strike a balance and propose a generalized shuf-

fling framework that interpolates between the two deployment

models. We show that systematic shuffling of the noisy responses

can thwart specific inference attacks while retaining some mean-

ingful data learnability. To this end, we propose a novel privacy

guarantee, 𝑑𝜎 -privacy, that captures the privacy of the order of a

data sequence. 𝑑𝜎 -privacy allows tuning the granularity at which

the ordinal information is maintained, which formalizes the degree

the resistance to inference attacks trading it off with data learn-

ability. Additionally, we propose a novel shuffling mechanism that

can achieve 𝑑𝜎 -privacy and demonstrate the practicality of our

mechanism via evaluation on real-world datasets.

1 INTRODUCTION
Differential Privacy (DP) and its local variant (LDP) are the most

commonly accepted notions of data privacy. LDP has the significant

advantage of not requiring a trusted centralized aggregator, and

has become a popular model for commercial deployments, such

as those of Microsoft [15], Apple [29], and Google [22]. Its formal

guarantee asserts that an adversary cannot infer the value of an

individual’s private input by observing the noisy output. However

in practice, a vast amount of public auxiliary information, such as

address, social media connections, court records, property records

[3], income and birth dates [4], is available for every individual.

An adversary, with access to such auxiliary information, can learn

about an individual’s private data from several other participants’
noisy responses. We illustrate this as follows.

Problem. An analyst runs a medical survey in Alice’s

community to investigate how the prevalence of a highly

contagious disease changes from neighborhood to neigh-

borhood. Community members report a binary value indi-

cating whether they have the disease.
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Next, consider the following two data reporting strategies.

Strategy 1. Each data owner passes their data through an

appropriate randomizer (that flips the input bit with some

probability) in their local devices and reports the noisy

output to the untrusted data analyst.

Strategy 2. The noisy responses from the local devices of

each of the data owners are collected by an intermediary

trusted shuffler which dissociates the device IDs (metadata)

from the responses and uniformly randomly shuffles them

before sending them to the analyst.

Strategy 1 corresponds to the standard LDP deployment model

(for example, Apple and Microsoft’s deployments). Here the order
of the noisy responses is informative of the identity of the data owners
– the noisy response at index 1 corresponds to the first data owner

and so on. Thus, the noisy responses can be directly linked with

its associated device ID and subsequently, auxiliary information.

For instance, an adversary
1
may know the home addresses of the

participants and use this to identify the responses of all the individ-

uals from Alice’s household. Being highly infectious, all or most of

them will have the same true value (0 or 1). So, the adversary can

reliably infer Alice’s value by taking a simple majority vote of her

and her household’s noisy responses. Note that this does not violate

the LDP guarantee since the inputs are appropriately randomized

when observed in isolation. We call such threats inference attacks
– recovering an individual’s private input using all or a subset of

other participants’ noisy responses. It is well known that protecting

against inference attacks, that rely on underlying data correlations,

is beyond the purview of DP [34, 36, 38, 46].

Strategy 2 corresponds to the recently introduced shuffleDPmodel,

such as Google’s Prochlo. Here, the noisy responses are completely

anonymized – the adversary cannot identify which LDP responses

correspond to Alice and her household. Under such a model, only

information that is completely order agnostic (i.e., symmetric func-

tions that can be derived from just the bag of the values, such as

aggregate statistics) can be extracted. Consequently, the analyst

also fails to accomplish their original goal as all the underlying data

correlation is destroyed.

Thus, we see that the two models of deployment for LDP present

a trade-off between vulnerability to inference attacks and scope of

data learnability. In fact, as demonstrated by Kifer et. al [35], it is

impossible to defend against all inference attacks while simultane-

ously maintaining utility for learning. In the extreme case that the

adversary knows everyone in Alice’s community has the same true

value (but not which one), no mechanism can prevent revelation of

Alice’s datapoint short of destroying all utility of the dataset. This

1
The analyst and the adversary could be same, we refer to them separately for the

ease of understanding.
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(a) Original Data

(b) LDP (c) Our scheme: 𝑟𝑎 (d) Our scheme: 𝑟𝑏 (e) Uniform shuffle

(f) Attack: LDP (g) Attack: 𝑟𝑎 (h) Attack: 𝑟𝑏 (i) Attack: unif. shuff.

Figure 1: Demonstration of how our proposed scheme thwarts inference attacks at different granularities. Fig. 1a depicts the original sensitive data (such as

income bracket) with eight color-coded labels. The position of the points represents public information (such as home address) used to correlate them. There

are three levels of granularity: warm vs. cool clusters, blue vs. green and red vs. orange crescents, and light vs. dark within each crescent. Fig. 1b depicts

𝜖 = 2.55 LDP. Fig. 1c and 1d correspond to our scheme, each with 𝛼 = 1 (privacy parameter, Def. 2.3). The former uses a smaller distance threshold (𝑟1, used to

delineate the granularity of grouping) that mostly shuffles in each crescent. The latter uses a larger distance threshold (𝑟2) that shuffles within each cluster.

Figures in the bottom row demonstrate an inference attack (uses Gaussian process correlation) on all four cases. We see that LDP reveals almost the entire

dataset (Fig. 1f) while uniform shuffling prevents all classification (1i). However, the granularity can be controlled with our scheme (Figs. 1g, 1h).

then begs the question: Can we formally suppress specific in-
ference attacks targeting each data owner while maintaining
some meaningful utility of the private data? Referring back to
our example, can we thwart attacks inferring Alice’s data using

specifically her households’ responses and still allow the medical

analyst to learn its target trends? Can we offer this to every data

owner participating?

In this paper, we strike a balance and we propose a generalized

shuffle framework for deployment that can interpolate between the

two extremes. Specifically, we guarantee each data owner that their

data is shuffled together with a carefully chosen group of other data

owners. Revisiting our example, consider uniformly shuffling the

responses from Alice’s household and her immediate neighbors.

Now an adversary cannot use her household’s responses to pre-

dict her value any better than they could with a random sample of

responses from this group. In the same way that LDP prevents re-

construction of her datapoint using specifically her noisy response,

this scheme prevents reconstruction of her datapoint using specifi-

cally her households’ responses. Our scheme can offer this to each

data owner, even when their groups are arbitrarily intersecting.

We can formally protect each data owner from inference attacks

using specifically their household, while still learning how disease

prevalence changes across the neighborhoods of Alice’s community.

This work offers two key contributions to the machine learning

privacy literature:

•Novel privacy guarantee.We propose a novel privacy definition,

𝑑𝜎 -privacy, which guarantees each data owner that their data will

be shuffled in with a semantically meaningful group.

•Novel shuffling framework. We propose a novel mechanism

that shuffles the data systematically and achieves 𝑑𝜎 -privacy. This

provides us a generalized shuffle framework for deployment that

can interpolate between the no shuffling (LDP) and uniform ran-

dom shuffling (shuffle model). Our experimental results (Sec. 3)

demonstrates its efficacy against realistic inference attacks.

1.1 Related Work
The shuffle model of DP [10, 12, 21] differs from our scheme as

follows. These works (1) study DP benefits of shuffling where we

study the inferential privacy benefits and (2) only study uniformly

random shuffling where ours generalizes this to configurable, non-

uniform shuffling.

A steady line of work has studied inferential privacy [14, 18, 28,

32, 35, 46]. Our work departs from those in that we focus on local
inferential privacy and do so via the new angle of shuffling.

Older works such as 𝑘-anonymity [44], 𝑙-diversity [39], Anatomy

[48], and others [13, 16, 45, 47, 49] have studied the privacy risk

of non-sensitive auxiliary information, or ‘quasi identifiers’. These

works (1) focus on the setting of dataset release, where we focus

on dataset collection and (2) do not offer each data owner formal

inferential guarantees, whereas this work does.

2 DATA PRIVACY AND SHUFFLING
In this section, we present 𝑑𝜎 -privacy and a shuffling mechanism

capable of achieving the 𝑑𝜎 -privacy guarantee.

2.1 Problem Setting
In our problem setting (Fig. 2), we have 𝑛 data owners DO𝑖 , 𝑖 ∈ [𝑛]
each with a private input 𝑥𝑖 ∈ X. The data owners first randomize

their inputs via a 𝜖-LDP mechanism to generate 𝑦𝑖 = M(𝑥𝑖 ). We

consider an informed adversary with public auxiliary information

t = ⟨𝑡1, · · · , 𝑡𝑛⟩, 𝑡𝑖 ∈ T about each individual. Additionally, just like

in the shuffle model, we have a trusted shuffler. It mediates upon

the noisy responses y = ⟨𝑦1, · · · , 𝑦𝑛⟩ and systematically shuffles

them based on t (since t is public, it is also accessible to the shuffler)

to obtain the final output sequence z = A(y) which is sent to the

untrusted data analyst. Next, we formally discuss the notion of

order and its implications in our setting.



Figure 2: Trust model (similar to shuffle model)

Definition 2.1. (Order) The order of a sequence x = ⟨𝑥1, · · · , 𝑥𝑛⟩
refers to the indices of its set of values {𝑥𝑖 } and is represented by

permutations from S𝑛 .

When the noisy response sequence y = ⟨𝑦1, · · · , 𝑦𝑛⟩ is repre-
sented by the identity permutation 𝜎𝐼 = (1 2 · · · 𝑛), the value at
index 1 corresponds to DO1 and so on. Standard LDP releases the

identity permutation w.p. 1. The output of the shuffler, z, is some

permutation of the sequence y, i.e.,

z = 𝜎 (y) = ⟨𝑦𝜎 (1) , · · · , 𝑦𝜎 (𝑛) ⟩
where 𝜎 is determined via A(·). For example, for 𝜎 = (4 5 2 3 1),
we have z = ⟨𝑦4, 𝑦5, 𝑦2, 𝑦3, 𝑦1⟩ which means that the value at index

1 (DO1) now corresponds to that of DO4 and so on.

2.2 Definition of 𝑑𝜎 -privacy
Inferential risk captures the threat of an adversary inferring DO𝑖 ’s

private 𝑥𝑖 using all or a subset of other data owners’ released 𝑦 𝑗 ’s.

Since we cannot prevent all such attacks and maintain utility, our

aim is to formally limit which data owners can be leveraged in infer-

ring DO𝑖 ’s private 𝑥𝑖 . To make this precise, each DO𝑖 is assigned a

corresponding group,𝐺𝑖 ⊆ [𝑛], of data owners. Each𝐺𝑖 consists of

all those DO𝑗 s who are similar to DO𝑖 w.r.t auxiliary information

𝑡𝑖 , 𝑡 𝑗 according to some distance metric 𝑑 : T × T → R. Here, we
define ‘similar’ as being under a threshold 𝑟 ∈ R:

𝐺𝑖 = { 𝑗 ∈ [𝑛]
��𝑑 (𝑡𝑖 , 𝑡 𝑗 ) ≤ 𝑟 },∀𝑖 ∈ [𝑛] (1)

G = {𝐺1, · · · ,𝐺𝑛} (2)

For example, 𝑑 (·) can be Euclidean distance if T corresponds to

geographical locations, thwarting inference attacks using one’s

immediate neighbors. If T represents a social media connectiv-

ity graph, 𝑑 (·) can measure the path length between two nodes,

thwarting inference attacks using specifically one’s friends. By

(non-uniformly) shuffling within each group 𝐺𝑖 ∈ G, we prevent
an adversary from learning whether a set of 𝑘 LDP values from

𝐺𝑖 correspond to one subset within 𝐺𝑖 or another. Ultimately, We

maintain indistinguishability between neighboring permutations:

Definition 2.2. (Neighboring Permutations) Given a group assign-

ment G, two permutations 𝜎, 𝜎 ′ ∈ S𝑛 are defined to be neighboring

w.r.t. a group 𝐺𝑖 ∈ G (denoted as 𝜎≈𝐺𝑖
𝜎 ′) if

𝜎 ( 𝑗) = 𝜎 ′( 𝑗) ∀𝑗 ∉ 𝐺𝑖 (3)

We denote the set of all neighboring permutations as

NG = {(𝜎, 𝜎 ′) |𝜎 ≈𝐺𝑖
𝜎 ′,∀𝐺𝑖 ∈ G} (4)

Now, we formally define 𝑑𝜎 -privacy as follows.

Definition 2.3 (𝑑𝜎 -privacy). For a given group assignment G on

a set of 𝑛 entities and a privacy parameter 𝛼 ∈ R≥0, a randomized

mechanismA : Y𝑛 ↦→ V is (𝛼,G)-𝑑𝜎 private if for all y ∈ Y𝑛
and

neighboring permutations 𝜎, 𝜎 ′ ∈ NG and any subset of output

𝑂 ⊆ V , we have

Pr[A
(
𝜎 (y)

)
∈ 𝑂] ≤ 𝑒𝛼 · Pr

[
A

(
𝜎 ′(y)

)
∈ 𝑂

]
(5)

𝜎 (y) and 𝜎 ′(y) are defined to be neighboring sequences.

𝑑𝜎 -privacy states that two neighboring permutations of a data

sequences are (almost) equally likely to generate the same output.

An important property of 𝑑𝜎 -privacy is that post-processing

computations on the output of a 𝑑𝜎 -private algorithm does not

degrade privacy. Additionally, when applied multiple times, the

privacy guarantee degrades gracefully. Both the properties are anal-

ogous to that of DP and are detailed in App. 5.2.

Privacy Implications. 𝑑𝜎 -privacy offers an inferential guaran-

tee. Regardless of an adversary’s prior knowledge of dependence

PrP [𝑥1, 𝑥2, . . . , 𝑥𝑛], they can’t use 𝑖’s group to make inferences on

𝑥𝑖 . Formally, once an adversary knows the (1) set of values {𝑦𝐺𝑖
}

in 𝑖’s group, and (2) the sequence of values y
𝐺𝑖

outside 𝑖’s group,

they can’t learn much about the true 𝑥𝑖 :���� log

PrP [z|𝑥𝑖 = 𝑎, {𝑦𝐺𝑖
}, y

𝐺𝑖
]

PrP [z|𝑥𝑖 = 𝑏, {𝑦𝐺𝑖
}, y

𝐺𝑖
]

����
=

���� log

PrP [𝑥𝑖 = 𝑎 |z, {𝑦𝐺𝑖
}, y

𝐺𝑖
]

PrP [𝑥𝑖 = 𝑏 |z, {𝑦𝐺𝑖
}, y

𝐺𝑖
] − log

PrP [𝑥𝑖 = 𝑎]
PrP [𝑥𝑖 = 𝑏]

���� ≤ 𝛼
2.3 𝑑𝜎 -private Shuffling Mechanism
We now describe our novel shuffling mechanism that can achieve

𝑑𝜎 -privacy. In a nutshell, our mechanism samples a permutation

from a distribution over permutations known as the Mallows model,

a popular probabilistic model for permutations [40]. The mode of

the distribution is given by the reference permutation 𝜎0 – the

probability of a permutation increases as we move ‘closer’ to 𝜎0

as measured by rank distance metrics, such as the Kendall’s tau

distance (Def. 5.1). The dispersion parameter 𝜃 controls how fast

this increase happens.

Definition 2.4. For a dispersion parameter 𝜃 , a reference permu-

tation 𝜎𝑜 ∈ S𝑛 , and a rank distance measure d : S𝑛 × S𝑛 ↦→ R,

PΘ,d (𝜎 : 𝜎0) = 1

𝜓 (𝜃,d) 𝑒
−𝜃d(𝜎,𝜎0)

is the Mallows model where

𝜓 (𝜃, d) = ∑
𝜎 ∈S𝑛

𝑒−𝜃d(𝜎,𝜎0)
is a normalization term and 𝜎 ∈ S𝑛 .

We can characterize the 𝑑𝜎 -privacy guarantee of our mechanism

much as we do the DP guarantee of classical mechanisms: with

variance and sensitivity. Intuitively, a larger dispersion parameter

𝜃 ∈ R (Def. 2.4) reduces randomness over permutations, increasing

utility and increasing (worsening) the privacy parameter 𝛼 . The

most we can increase 𝜃 for a given 𝛼 guarantee depends on the

sensitivity of the rank distance measure d(·) over all neighboring
permutations 𝑁G . Formally, we define the sensitivity as

Δ(𝜎0 : d,G) = max

(𝜎,𝜎′) ∈𝑁G

��d(𝜎0𝜎, 𝜎0) − d(𝜎0𝜎
′, 𝜎0)

�� ,



(a) PUDF: Attack (b) Twitch: Attack (c) PUDF:Learnability (d) Twitch: Learnability

Figure 3: Our scheme interpolates between standard LDP (orange line) and uniform shuffling (blue line) in both privacy and data learnability. All plots increase

group size along x-axis (except (d)). (a) → (b): The fraction of participants vulnerable to an inferential attack. (c) → (d): The accuracy of a calibration model

trained on z predicting the distribution of LDP outputs at any point 𝑡 ∈ T , such as the distribution of medical insurance types used specifically in the Houston

area (not possible when uniformly shuffling across Texas).

the maximum change in distance d(·) from the reference permuta-

tion 𝜎0 for any pair of neighboring

permutations (𝜎, 𝜎 ′) ∈ 𝑁G after applying 𝜎0 to them, (𝜎0𝜎, 𝜎0𝜎
′).

The privacy parameter of the mechanism is then proportional to

its sensitivity 𝛼 = 𝜃 · Δ(𝜎0 : d,G).
The sensitivity of a rank distance measure d(·) and reference

permutation 𝜎0 is an increasing function of the width parameter,

which measures how ‘spread apart’ the members of 𝐺𝑖 are in 𝜎0:

𝜔𝜎
𝐺𝑖

= max

( 𝑗,𝑘) ∈𝐺𝑖×𝐺𝑖

���𝜎−1 ( 𝑗) − 𝜎−1 (𝑘)
���, 𝑖 ∈ [𝑛]

𝜔𝜎
G = max

𝐺𝑖 ∈G
𝜔𝜎
𝐺𝑖

For Kendall’s 𝜏 distance d(·), the sensitivity is given by Δ(𝜎0 :

d,G) =
𝜔𝜎

G (𝜔
𝜎
G+1)

2
. If a reference permutation clusters the members

of each group closely together (low width) the groups are more

likely to permute within themselves. This has two benefits. First,

if a group is likely to shuffle within itself, it will have better (𝜂, 𝛿)-
preservation (see App. 5.10 for demonstration). Second, since a low-

width group is very likely to shuffle its members, we can achieve a

lower 𝛼 for the same dispersion parameter, 𝜃 .

Unfortunately, minimizing 𝜔𝜎
G is an NP-hard problem (Thm. 5.4

in App. 5.5). We instead estimate the optimal 𝜎0 using a heuristic

approach based on a graph breadth first search (details in App. 5.6).

Theorem 2.1. The Mallows Mechanism is (𝛼,G)-𝑑𝜎 private for
𝛼 = 𝜃 · Δ(𝜎0 : d,G) (proof in App. 5.8) .

3 EVALUATION
Our experiments aim to answer the following two questions: Q1.
Does the Alg. 1 mechanism protect against realistic inference at-

tacks?Q2.Howwell can Alg. 1 tune a model’s ability to learn trends

within the shuffled data i.e. tune data learnability?
We are not aware of any prior works that provide comparable

local inferential privacy. Hence, we baseline our mechanism with

the two extremes: standard LDP and uniform random shuffling.

See App 6 for further experiments and more detail of experimental

methods.

For concreteness, we detail our procedurewith the PUDF dataset [2]

(license), which includes 𝑛 ≈ 29k psychiatric patient records in

Texas. Each data owner’s sensitive value 𝑥𝑖 is their medical pay-

ment method, which is reflective of socioeconomic class (such as

medicaid or charity). Public side information 𝑡 ∈ T is the hospital’s

geolocation. Analysts collect such information to better understand

how payment methods (and consequently payment amounts) vary

from town to town [20]. Uniform shuffling across Texas precludes

such analyses. Standard LDP risks inference attacks, since patients

attending hospitals in the same neighborhood have similar socioe-

conomic standing and use similar payment methods, allowing an

adversary to correlate their LDP 𝑦𝑖 ’s. Where PUDF uses geographi-

cal proximity for T , the Twitch dataset uses proximity in a social

network, and the 𝑥𝑖 ’s indicate use of profanity X = {0, 1}.
To trade these off inferential threat and learnability, we apply our

mechanism with 𝛼 = 4 and check 1) what fraction of the data

owners are vulnerable to a simple inferential adversary and 2) how

well a calibration model can predict the local distribution of sen-

sitive 𝑥𝑖 ’s near each 𝑡𝑖 ∈ T . The x-axis steadily increases group

size either by increasing 𝑟 or directly by increasing the width 𝜔𝜎
G

accommodated (Twitch). For our attacks Fig. 3a, 3b, a nearest neigh-

bor adversary visits each DO𝑖 , picks 25 other data owners close

in 𝑑 (𝑡𝑖 , ·), and takes a majority vote of their reported 𝑧 𝑗 values

to predict 𝑥𝑖 . For PUDF, this means finding 25 other individuals

who visited hospitals near DO𝑖 ’s, and using their 𝑧 𝑗 ’s to predict

𝑥𝑖 . We report the fraction of vulnerable data owners, 𝜌 : the subset

of data owners for whom this attack is successful over 90% of our

LDP trials – although they randomize with LDP, there is a ≥ 90%

chance that a simple inference attack can recover their true value.

For our learnability test, Fig. 3c, 3d, we train a calibration model

to predict the distribution of 𝑥𝑖 ’s near each 𝑡𝑖 ∈ t. For PUDF, this
means predicting the distribution of insurance types used near e.g.

𝑡𝑖 = Houston.

We observe that our framework effectively interpolates between

uniform shuffling and standard LDP for both practical inference

attacks and learning tasks.

4 CONCLUSION
We propose a generalized shuffling framework that interpolates

between standard LDP and uniform random shuffling. Our new

privacy definition, 𝑑𝜎 -privacy, casts new light on the inferential

privacy benefits of shuffling.

https://www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm
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5 APPENDIX
5.1 Background Cntd.
Here we define two rank distance measures

Definition 5.1 (Kendall’s 𝜏 Distance). For any two permutations,

𝜎, 𝜋 ∈ S𝑛 , the Kendall’s 𝜏 distance d𝜏 (𝜎, 𝜋) counts the number of

pairwise disagreements between 𝜎 and 𝜋 , i.e., the number of item

pairs that have a relative order in one permutation and a different

order in the other. Formally,

d𝜏 (𝜎, 𝜋) =
��� {(𝑖, 𝑗) : 𝑖 < 𝑗,

[
𝜎 (𝑖) > 𝜎 ( 𝑗) ∧ 𝜋 (𝑖) < 𝜋 ( 𝑗)

]
∨
[
𝜎 (𝑖) < 𝜎 ( 𝑗) ∧ 𝜋 (𝑖) > 𝜋 ( 𝑗)

]} ��� (6)

For example, if 𝜎 = (1 2 3 4 5 6 7 8910) and 𝜋 = (12365478910),
then d𝜏 (𝜎, 𝜋) = 3.

Next, Hamming distance measure is defined as follows.

Definition 5.2 (Hamming Distance). For any two permutations,

𝜎, 𝜋 ∈ S𝑛 , the Hamming distance d𝐻 (𝜎, 𝜋) counts the number of

positions in which the two permutations disagree. Formally,

d𝐻 (𝜎, 𝜋) =
���{𝑖 ∈ [𝑛] : 𝜎 (𝑖) ≠ 𝜋 (𝑖)

}���
Repeating the above example, if 𝜎 = (1 2 3 4 5 6 7 8 9 10) and
𝜋 = (1 2 3 6 5 4 7 8 9 10), then d𝐻 (𝜎, 𝜋) = 2.

5.2 Additional Properties of 𝑑𝜎 -privacy
Lemma 5.1 (Convexity). Let A1, . . .A𝑘 : Y𝑛 ↦→ V be a collec-

tion of 𝑘 (𝛼,G)-𝑑𝜎private mechanisms for a given group assignment
G on a set of 𝑛 entities. Let A : Y𝑛 ↦→ V be a convex combination
of these 𝑘 mechanisms, where the probability of releasing the output
of mechanism A𝑖 is 𝑝𝑖 , and

∑𝑘
𝑖=1

𝑝𝑖 = 1. A is also (𝛼,G)-𝑑𝜎private
w.r.t. G.

Proof. For any (𝜎, 𝜎 ′) ∈ NG and y ∈ Y:

Pr[A
(
𝜎 (y)

)
∈ 𝑂] =

𝑘∑
𝑖=1

𝑝𝑖Pr[A𝑖

(
𝜎 (y)

)
∈ 𝑂]

≤ 𝑒𝛼
𝑘∑
𝑖=1

𝑝𝑖Pr[A𝑖

(
𝜎 ′(y)

)
∈ 𝑂]

= Pr[A
(
𝜎 ′(y)

)
∈ 𝑂]

□

Theorem5.1 (Post-processing). LetA : Y𝑛 ↦→ V be (𝛼,G)-𝑑𝜎private
for a given group assignment G on a set of 𝑛 entities. Let 𝑓 : V ↦→ V ′

be an arbitrary randomized mapping. Then 𝑓 ◦ A : Y𝑛 ↦→ V ′ is also
(𝛼,G)-𝑑𝜎private.

Proof. Let𝑔 : V → V ′
be a deterministic, measurable function.

For any output eventZ ⊂ V ′
, letW be its preimage:

W = {𝑣 ∈ V|𝑔(𝑣) ∈ Z}. Then, for any (𝜎, 𝜎 ′) ∈ NG ,

Pr

[
𝑔

(
A

(
𝜎 (y)

) )
∈ Z

]
= Pr

[
A

(
𝜎 (y)

)
∈ W

]
≤ 𝑒𝛼 · Pr

[
A

(
𝜎 ′(y)

)
∈ W

]
= 𝑒𝛼 · Pr

[
𝑔

(
A

(
𝜎 ′(y)

) )
∈ Z

]

This concludes our proof because any randomized mapping can be

decomposed into a convex combination of measurable, determinis-

tic functions [19], and as Lemma 5.1 shows, a convex combination

of (𝛼,G)-𝑑𝜎private mechanisms is also (𝛼,G)-𝑑𝜎private. □

Theorem 5.2 (Sequential Composition). IfA1 andA2 are (𝛼1,G)-
and (𝛼2,G)-𝑑𝜎private mechanisms, respectively, that use independent
randomness, then releasing the outputs

(
A1 (y),A2 (y)

)
satisfies (𝛼1+

𝛼2,G)-𝑑𝜎privacy.

Proof. We have that A1 : Y𝑛 → V ′
and A1 : Y𝑛 → V ′′

each satisfy 𝑑𝜎 -privacy for different 𝛼 values. Let A : Y𝑛 →
(V ′×V ′′) output

(
A1 (y),A2 (y)

)
. Then, we may write any event

Z ∈ (V ′ ×V ′′) asZ′ ×Z′′
, whereZ′ ∈ V ′

andZ′′ ∈ V ′′
. We

have for any (𝜎, 𝜎 ′) ∈ NG ,

Pr

[
A

(
𝜎 (y)

)
∈ Z

]
= Pr

[ (
A1

(
𝜎 (y)

)
,A2

(
𝜎 (y)

) )
∈ Z

]
= Pr

[
{A1

(
𝜎 (y)

)
∈ Z′} ∩ {A2

(
𝜎 (y)

)
∈ Z′′}

]
= Pr

[
{A1

(
𝜎 (y)

)
∈ Z′}

]
Pr

[
{A2

(
𝜎 (y)

)
∈ Z′′}

]
≤ 𝑒𝛼1+𝛼2

Pr

[
{A1

(
𝜎 ′(y)

)
∈ Z′}

]
Pr

[
{A2

(
𝜎 ′(y)

)
∈ Z′′}

]
= 𝑒𝛼1+𝛼2 · Pr

[
A

(
𝜎 ′(y)

)
∈ Z

]
□

Proof of Lemma 5.2

Lemma 5.2. An 𝜖-LDP mechanism is (𝑘𝜖,G)-𝑑𝜎 private for any
group assignment G such that 𝑘 ≥ max𝐺𝑖 ∈G |𝐺𝑖 |

Proof. This follows from 𝑘-group privacy [19]. y are 𝜀-LDP

outputs ALDP (x) from input sequence x. For any 𝜎 ≈𝐺𝑖
𝜎 ′, we

know by definition that 𝜎 ( 𝑗) = 𝜎 ′( 𝑗) for all 𝑗 ∉ 𝐺𝑖 . As such, the

permuted sequences 𝜎 (x) 𝑗 = 𝜎 ′(x) 𝑗 for all 𝑗 ∉ 𝐺𝑖 , and differ in at

most |𝐺𝑖 | entries. In other words,

d𝐻
(
𝜎 (x), 𝜎 ′(x)

)
≤ |𝐺𝑖 |

Using this fact, we have from the 𝑘-group property of LDP that

Pr

[
ALDP

(
𝜎 (x)

)
∈ 𝑂

]
≤ 𝑒 |𝐺𝑖 |𝜖

Pr

[
ALDP

(
𝜎 ′(x)

)
∈ 𝑂

]
and thus if 𝑘 ≥ max𝐺𝑖 ∈G |𝐺𝑖 |,

Pr

[
ALDP

(
𝜎 (x)

)
∈ 𝑂

]
≤ 𝑒𝑘𝜖Pr

[
ALDP

(
𝜎 ′(x)

)
∈ 𝑂

]
for all (𝜎, 𝜎 ′) ∈ NG . □

5.3 Proof for Thm. 5.3
Theorem 5.3. For a given group assignment G on a set of 𝑛 data
owners, if a shuffling mechanismA : Y𝑛 ↦→ Y𝑛 is (𝛼,G)-𝑑𝜎private,
then for each data owner DO𝑖 , 𝑖 ∈ [𝑛],

L𝜎P (x) = max

𝑖∈[𝑛]
𝑎,𝑏∈X

��� log

PrP [z|𝑥𝑖 = 𝑎, {𝑦𝐺𝑖
}, y

𝐺𝑖
]

PrP [z|𝑥𝑖 = 𝑏, {𝑦𝐺𝑖
}, y

𝐺𝑖
]

��� ≤ 𝛼
for a prior distribution P, where z = A(y) and y

𝐺𝑖
is the noisy

sequence for all data owners outside 𝐺𝑖 .



Proof.

PrP [z|𝑥𝑖 = 𝑎, {𝑦𝐺𝑖
}, y

𝐺𝑖
]

PrP [z|𝑥𝑖 = 𝑏, {𝑦𝐺𝑖
}, y

𝐺𝑖
]

=

∫
PrP [y|𝑥𝑖 = 𝑎, {𝑦𝐺𝑖

}, y
𝐺𝑖

] PrA [z|y]𝑑y∫
PrP [y|𝑥𝑖 = 𝑏, {𝑦𝐺𝑖

}, y
𝐺𝑖

] PrA [z|y]𝑑y

=

∑
𝜎 ∈S𝑚

PrP [𝜎 (y∗
𝐺𝑖
) |𝑥𝑖 = 𝑎, y𝐺𝑖

] PrA [z|𝜎 (y∗
𝐺𝑖
), y

𝐺𝑖
]∑

𝜎 ∈S𝑚
PrP [𝜎 (y∗

𝐺𝑖
) |𝑥𝑖 = 𝑏, y𝐺𝑖

] PrA [z|𝜎 (y∗
𝐺𝑖
), y

𝐺𝑖
]

≤ max

{𝜎,𝜎′∈S𝑚 }

PrA [z|𝜎 (y∗
𝐺𝑖
), y

𝐺𝑖
]

PrA [z|𝜎 ′(y∗
𝐺𝑖
), y

𝐺𝑖
]

≤ max

{𝜎,𝜎′∈N𝐺𝑖
}

PrA [z|𝜎 (y)]
PrA [z|𝜎 ′(y)]

≤ 𝑒𝛼

The second line simply marginalizes out the full noisy sequence y.
The third line reduces this to a sum over permutations of of y𝐺𝑖

,

where𝑚 = |𝐺𝑖 | and y∗
𝐺𝑖

is any fixed permutation of values {𝑦𝐺𝑖
}.

This is possible since we are given the values outside the group,

y
𝐺𝑖

, and the unordered set of values inside the group, {𝑦𝐺𝑖
}.

The fourth line uses the fact that the numerator and denominator

are both convex combinations of PrA [z|𝜎 (y∗
𝐺𝑖
), y

𝐺𝑖
] over all 𝜎 ∈

S𝑚 .

The fifth line uses the fact that for any y
𝐺𝑖

,

(𝜎 (y∗𝐺𝑖
), y

𝐺𝑖
) ≈𝐺𝑖

(𝜎 ′(y∗𝐺𝑖
), y

𝐺𝑖
) .

This allows a further upper bound over all neighboring sequences

w.r.t. 𝐺𝑖 , and thus over any permutation of y
𝐺𝑖

, as long as it is the

same in the numerator and denominator. □

5.4 Discussion on Properties of Mallows
Mechanism

Property 1. For group assignment G, a mechanism A(·) that shuf-
fles according to a permutation sampled from the Mallows model
P
𝜃,d (·), satisfies (𝛼,G)-𝑑𝜎privacy where

Δ(𝜎0 : d,G) = max

(𝜎,𝜎′) ∈𝑁G
|d(𝜎0𝜎, 𝜎0) − d(𝜎0𝜎

′, 𝜎0) |

𝛼 = 𝜃 · Δ(𝜎0 : d,G)

We refer toΔ(𝜎0 : d,G) as the sensitivity of the rank-distance measure
d(·)

Proof. Consider two permutations of the initial sequence y,
𝜎1 (y), 𝜎2 (y) that are neighboring w.r.t. some group𝐺𝑖 ∈ G, 𝜎1 ≈𝐺𝑖

𝜎2. Additionally consider any fixed released shuffled sequence z.
Let Σ1, Σ2 be the set of permutations that turn 𝜎1 (y), 𝜎2 (y) into z,
respectively:

Σ1 = {𝜎 ∈ S𝑛 : 𝜎𝜎1 (y) = z}
Σ2 = {𝜎 ∈ S𝑛 : 𝜎𝜎2 (y) = z} .

In the case that {𝑦} consists entirely of unique values, Σ1, Σ2 will

each contain exactly one permutation, since only one permutation

can map 𝜎𝑖 (y) to z.

Lemma 5.3. For each permutation 𝜎 ′
1
∈ Σ1 there exists a permuta-

tion in 𝜎 ′
2
∈ Σ2 such that

𝜎 ′
1
≈𝐺𝑖

𝜎 ′
2

.

Proof follows from the fact that — since only the elements 𝑗 ∈ 𝐺𝑖

differ in 𝜎1 (y) and 𝜎2 (y) — only those elements need to differ to

achieve the same output permutation. In other words, we may

define 𝜎 ′
1
, 𝜎 ′

2
at all inputs 𝑖 ∉ 𝐺𝑖 identically, and then define all

inputs 𝑖 ∈ 𝐺𝑖 differently as needed. As such, they are neighboring

w.r.t. 𝐺𝑖 .

Recalling that Alg. 1 applies 𝜎−1

0
to the sampled permutation, we

must sample 𝜎0𝜎
′
1
(for some 𝜎 ′

1
∈ Σ1) for the mechanism to produce

z from 𝜎1 (y). Formally, since 𝜎 ′
1
𝜎1 (y) = z we must sample 𝜎0𝜎

′
1
to

get z since we are going to apply 𝜎−1

0
to the sampled permutation.

Pr

[
A

(
𝜎1 (y)

)
= z

]
= P

𝜃,d
(
𝜎0𝜎

′, 𝜎 ′ ∈ Σ1 : 𝜎0

)
Pr

[
A

(
𝜎2 (y)

)
= z

]
= P

𝜃,d
(
𝜎0𝜎

′, 𝜎 ′ ∈ Σ2 : 𝜎0

)
Taking the log odds, we have

P
𝜃,d

(
𝜎0𝜎

′, 𝜎 ′ ∈ Σ1 : 𝜎0

)
P
𝜃,d

(
𝜎0𝜎

′, 𝜎 ′ ∈ Σ2 : 𝜎0

) =

∑
𝜎′∈Σ1

PΘ,d (𝜎0𝜎
′

: 𝜎0)∑
𝜎′∈Σ2

PΘ,d (𝜎0𝜎
′

: 𝜎0)

=

∑
𝜎′∈Σ1

𝑒−𝜃d(𝜎0𝜎
′,𝜎0)∑

𝜎′∈Σ2
𝑒−𝜃d(𝜎0𝜎

′,𝜎0)

≤ 𝑒−𝜃d(𝜎0𝜎𝑎,𝜎0)

𝑒−𝜃d(𝜎0𝜎𝑏 ,𝜎0)

≤ 𝑒𝜃 |d(𝜎0𝜎𝑎,𝜎0)−d(𝜎0𝜎𝑏 ,𝜎0) |

≤ 𝑒𝜃Δ

Therefore, setting 𝛼 = Δ, we achieve (𝛼,G)-𝑑𝜎privacy. □

Property 2. The sensitivity of a rank-distance is an increasing func-
tion of the width 𝜔𝜎0

G . For instance, for Kendall’s 𝜏 distance d𝜏 (·), we

have Δ(𝜎0 : d𝜏 ,G) =
𝜔

𝜎
0

G (𝜔𝜎
0

G +1)
2

.

To show the sensitivity of Kendall’s 𝜏 , we make use of its triangle

inequality.

Proof. Recall from the proof of the previous property that the

expression d(𝜎, 𝜎0) = d
(
𝜎0𝜎, 𝜎0

)
, where d is the actual rank distance

measure e.g. Kendall’s 𝜏 . As such, we require that

��d(𝜎0𝜎𝑎, 𝜎0) − d(𝜎0𝜎𝑏 , 𝜎0)
�� ≤ 𝜔

𝜎0

G (𝜔𝜎0

G + 1)
2

for any pair of permutations (𝜎𝑎, 𝜎𝑏 ) ∈ 𝑁G .
For any group𝐺𝑖 ∈ G, let𝑊𝑖 ⊆ 𝑛 represent the smallest contigu-

ous subsequence of indices in 𝜎0 that contains all of 𝐺𝑖 .

For instance, if 𝜎0 = [2, 4, 6, 8, 1, 3, 5, 7] and 𝐺𝑖 = {2, 6, 8}, then
𝑊𝑖 = {2, 4, 6, 8}. Then the group width width is 𝜔𝑖 = |𝑊𝑖 | − 1 = 3.

Now consider two permutations neighboring w.r.t. 𝐺𝑖 , 𝜎𝑎 ≈𝐺𝑖
𝜎𝑏 ,

so only the elements of 𝐺𝑖 are shuffled between them. We want to

bound ��d(𝜎0𝜎𝑎, 𝜎0) − d(𝜎0𝜎𝑏 , 𝜎0)
��



For this, we use a pair of triangle inequalities:

d(𝜎0𝜎𝑎, 𝜎0𝜎𝑏 ) ≥ d(𝜎0𝜎𝑎, 𝜎0) − d(𝜎0𝜎𝑏 , 𝜎0) &

d(𝜎0𝜎𝑎, 𝜎0𝜎𝑏 ) ≥ d(𝜎0𝜎𝑏 , 𝜎0) − d(𝜎0𝜎𝑎, 𝜎0)
so, ��d(𝜎0𝜎𝑎, 𝜎0) − d(𝜎0𝜎𝑏 , 𝜎0)

�� ≤ d(𝜎0𝜎𝑎, 𝜎0𝜎𝑏 )
Since 𝜎0𝜎𝑎 and 𝜎0𝜎𝑏 only differ in the contiguous subset𝑊𝑖 , the

largest number of discordant pairs between them is given by the

maximum Kendall’s 𝜏 distance between two permutations of size

𝜔𝑖 + 1:

|d(𝜎0𝜎𝑎, 𝜎0𝜎𝑏 ) | ≤
𝜔𝑖 (𝜔𝑖 + 1)

2

Since 𝜔
𝜎0

G ≥ 𝜔𝑖 for all 𝐺𝑖 ∈ G, we have that

Δ(𝜎0 : d,G) ≤
𝜔
𝜎0

G (𝜔𝜎0

G + 1)
2

□

5.5 Hardness of Computing The Optimum
Reference Permutation

Theorem 5.4. The problem of finding the optimum reference per-
mutation, i.e., 𝜎0 = arg min𝜎 ∈S𝑛

𝜔𝜎
G is NP-hard.

Proof. We start with the formal representation of the problem

as follows.

Optimum Reference Permutation Problem. Given n subsets G =

{𝐺𝑖 ∈ 2
[𝑛] , 𝑖 ∈ [𝑛]}, find the permutation 𝜎0 = arg min𝜎 ∈S𝑛

𝜔𝜎
G .

Now, consider the following job-shop scheduling problem.

Job Shop Scheduling. There is one job 𝐽 with 𝑛 operations 𝑜𝑖 , 𝑖 ∈
[𝑛] and 𝑛 machines such that 𝑜𝑖 needs to run on machine𝑀𝑖 . Addi-

tionally, each machine has a sequence dependent processing time

𝑝𝑖 . Let 𝑆 be the sequence till There are 𝑛 subsets 𝑆𝑖 ⊆ [𝑛], each
corresponding to a set of operations that need to occur in contigu-

ous machines, else the processing times incur penalty as follows.

Let 𝑝𝑖 denote the processing time for the machine running the 𝑖-th

operation scheduled. Let S𝑖 be the prefix sequence with 𝑖 schedul-
ings. For instance, if the final scheduling is 1 3 4 5 9 8 10 6 7 2 then

S4 = 1345. Additionally, let 𝑃
𝑗

S𝑖
be the shortest subsequence such of

S𝑖 such that it contains all the elements in 𝑆 𝑗 ∩ {S𝑖 }. For example

for 𝑆1 = {3, 5, 7}, 𝑃1

S4

= 345.

𝑝𝑖 = max

𝑖∈[𝑛]
( |𝑃 𝑗
S𝑖
| − |𝑆 𝑗 ∩ {S𝑖 }|) (7)

The objective is to find a scheduling for 𝐽 such that it minimizes

the makespan, i.e., the completion time of the job. Note that 𝑝𝑛 =

max𝑖 𝑝𝑖 , hence the problem reduces to minimizing 𝑝𝑛 .

Lemma 5.4. The aforementioned job shop scheduling problem with
sequence-dependent processing time is NP-hard.

Proof. Consider the following instantiation of the sequence-

dependent job shop scheduling problem where the processing time

is given by 𝑝𝑖=𝑝𝑖−1 + 𝑤𝑘𝑙 , 𝑝1 = 0 where S𝑖 [𝑖 − 1] = 𝑘 , S𝑖 [𝑖] = 𝑙

and 𝑤𝑖 𝑗 , 𝑗 ∈ 𝑆𝑖 represents some associated weight. This problem

is equivalent to the travelling salesman problem (TSP) [5] and is

therefore, NP-hard. Thus, our aforementioned job shop scheduling

problem is also clearly NP-hard. □

Reduction: Let the 𝑛 subsets 𝑆𝑖 correspond to the groups in G.
Clearly, minimizing𝜔𝜎

G minimizes 𝑝𝑛 . Hence, the optimal reference

permutation gives the solution to the scheduling problem as well.

□

5.6 Description of Shuffling Mechanism

:

Algorithm 1: 𝑑𝜎 -private Shuffling Mech.

Input: LDP sequence y = ⟨𝑦1, · · · , 𝑦𝑛⟩;

Public aux. info. t = ⟨𝑡1, · · · 𝑡𝑛⟩;
Dist. threshold 𝑟 ; Priv. param. 𝛼 ;

Output: z - Shuffled output sequence;

1 G = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐺𝑟𝑜𝑢𝑝𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (t, 𝑟 );
2 Construct graph G with

a) vertices 𝑉 = {1, 2, · · · , 𝑛}
b) edges 𝐸 = {(𝑖, 𝑗) : 𝑗 ∈ 𝐺𝑖 ,𝐺𝑖 ∈ G}

3 𝑟𝑜𝑜𝑡 = arg max𝑖∈[𝑛] |𝐺𝑖 |;
4 𝜎0 = BFS(G, 𝑟𝑜𝑜𝑡);
5 Δ= 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝜎0,G)
6 𝜃 = 𝛼/Δ;

7 𝜎̂ ∼ P
𝜃,d (𝜎0) ;

8 𝜎∗ = 𝜎−1

0
𝜎̂ ;

9 z = ⟨𝑦𝜎∗ (1) , · · ·𝑦𝜎∗ (𝑛) ⟩;
10 Return z;

Alg. 1 above proceeds as follows. We first compute the group

assignment, G, based on the public auxiliary information and de-

sired distance threshold 𝑟 . Then we construct 𝜎0 with a breadth

first search (BFS) graph traversal.

We translate G into an undirected graph (𝑉 , 𝐸), where the ver-
tices are indices 𝑉 = [𝑛] and two indices 𝑖, 𝑗 are connected by an

edge if they are both in some group (Step 2). Next, 𝜎0 is computed

via a breadth first search traversal (Step 4) – if the 𝑘-th node in

the traversal is 𝑖 , then 𝜎0 (𝑘) = 𝑖. The rationale is that neighbors of 𝑖
(members of 𝐺𝑖 ) would be traversed in close succession. Hence, a

neighboring node 𝑗 is likely to be traversed at some step ℎ near 𝑘

which means |𝜎−1

0
(𝑖) − 𝜎−1

0
( 𝑗) | = |ℎ − 𝑘 | would be small (resulting in

low width). Additionally, starting from the node with the highest

degree (Steps 3-4) which corresponds to the largest group in G
(lower bound for𝜔𝜎

G for any 𝜎) helps to curtail the maximumwidth

in 𝜎0

This is followed by the computation of the dispersion parameter,

𝜃 , for our Mallows model (Steps 5-6). Next, we sample a permuta-

tion from the Mallows model (Step 7) 𝜎̂ ∼ P𝜃 (𝜎 : 𝜎0) and we apply

the inverse reference permutation to it, 𝜎∗ = 𝜎−1

0
𝜎̂ to obtain the

desired permutation for shuffling. Recall that 𝜎̂ is (most likely) close

to 𝜎0, which is unrelated to the original order of the data. 𝜎−1

0
there-

fore brings 𝜎∗ back to a shuffled version of the original sequence

(identity permutation 𝜎𝐼 ). Note that since Alg. 1 is publicly known,

the adversary/analyst knows 𝜎0. Hence, even in the absence of

this step from our algorithm, the adversary/analyst could perform



this anyway. Finally, we permute y according to 𝜎∗ and output the

result z = 𝜎̂ (y) (Steps 9-10).

5.7 Illustration of Alg. 1

(a) Group graph

(b) BFS reference permutation 𝜎0

Figure 4: Illustration of Alg. 10

We now provide a small-scale step-by-step example of how Alg.

10 operates.

Fig. 4a is an example of a grouping G on a dataset of 𝑛 = 8 ele-

ments. The group of DO𝑖 includes 𝑖 and its neighbors. For instance,

𝐺8 = {8, 3, 5}. To build a reference permutation, Alg. 10 starts at

the index with the largest group, 𝑖 = 5 (highlighted in purple), with

𝐺5 = {5, 2, 3, 8, 4}. As shown in Figure 4b, the 𝜎0 is then constructed

by following a BFS traversal from 𝑖 = 5. Each 𝑗 ∈ 𝐺5 is visited,

queuing up the neighbors of each 𝑗 ∈ 𝐺5 that haven’t been visited

along the way, and so on. The algorithm completes after the entire

graph has been visited.

The goal is to produce a reference permutation in which the

width of each group in the reference permutation 𝜔𝑖 is small. In

this case, the width of the largest group 𝐺5 is as small as it can

be 𝜔5 = 5 − 1 = 4. However, the width of 𝐺4 = {4, 5, 7} is the

maximum possible since 𝜎−1 (5) = 1 and 𝜎−1 (7) = 8, so 𝜔4 = 7.

This is difficult to avoid when the maximum group size is large as

compared to the full dataset size 𝑛. Realistically, we expect 𝑛 to be

significantly larger, leading to relatively smaller groups.

With the reference permutation in place, we compute the sensi-

tivity:

Δ(𝜎0 : d,G) = 𝜔4 (𝜔4 + 1)
2

= 28

Which lets us set 𝜃 = 𝛼
28

for any given 𝛼 privacy value. To reiterate,

lower 𝜃 results in more randomness in the mechanism.

We then sample the permutation 𝜎̂ = P
𝜃,d (𝜎0). Suppose

𝜎̂ = [3 2 5 4 8 1 7 6]

Then, the released z is given as

z = 𝜎∗ = 𝜎−1𝜎̂ (y)
= [𝑦1 𝑦2 𝑦5 𝑦8 𝑦3 𝑦7 𝑦6 𝑦4]

One can think of the above operation as follows. What was 5 in the

reference permutation (𝜎0 (1) = 5) is 3 in the sampled permutation

(𝜎̂ (1) = 3). So, index 5 corresponding to DO5 now holds DO3’s

noisy data 𝑦3. As such, we shuffle mostly between members of the

same group, and minimally between groups.

5.8 Proof of Thm. 2.1
Theorem 2.1 Alg. 1 is (𝛼,G)-𝑑𝜎 private.

Proof. The proof follows from Prop. 1. Having computed the

sensitivity of the reference permutation 𝜎0, Δ, and set 𝜃 = 𝛼/Δ,
we are guaranteed by Property 1 that shuffling according to the

permutation 𝜎̂ guarantees (𝛼,G)-𝑑𝜎privacy.
In the algorithm, we permute by 𝜎−1

0
𝜎̂ . Since this is equivalent

to first permuting by 𝜎̂ and then permuting by 𝜎−1

0
, this too guaran-

tees (𝛼,G)-𝑑𝜎privacy by the immunity to post-processing property

(Thm. 5.1). □

.

5.9 Proof of Thm. 5.5
Theorem 5.5. Theorem Alg. 1 satisfies (𝛼 ′,G′)-𝑑𝜎privacy for any

group assignment G′ where 𝛼 ′ = 𝛼 Δ(𝜎0:d,G′)
Δ(𝜎0:d,G)

Proof. Recall from Property 1 that we satisfy (𝛼,G) 𝑑𝜎 -privacy
by setting 𝜃 = 𝛼/Δ(𝜎0 : d,G). Given alternative grouping G′

with

sensitivity Δ(𝜎0 : d,G′), this same mechanism provides

𝛼 ′ =
𝜃

Δ(𝜎0 : d,G′)

=
𝛼/Δ(𝜎0 : d,G)
Δ(𝜎0 : d,G′)

= 𝛼
Δ(𝜎0 : d,G′)
Δ(𝜎0 : d,G)

□

5.10 Formal Utility Analysis of Alg. 1
Theorem 5.6. For a given set 𝑆 ⊂ [𝑛] and Hamming distance metric,
d𝐻 (·), Alg. 10 is (𝜂, 𝛿)-preserving for 𝛿 = 1

𝜓 (𝜃,d𝐻 )
∑𝑛
ℎ=2𝑘+1

(𝑒−𝜃 ·ℎ ·
𝑐ℎ) where 𝑘 = ⌈(1 − 𝜂) · |𝑆 |⌉ and 𝑐ℎ is the number of permutations



with hamming distance ℎ from the reference permutation that do not
preserve 𝜂% of 𝑆 and is given by

𝑐ℎ =

max(𝑙𝑠 , ⌊ℎ/2⌋)∑
𝑗=𝑘+1

(
𝑙𝑠

𝑗

)
·
(
𝑛 − 𝑙𝑠
𝑗

)
·
[

min(𝑙𝑠−𝑗,ℎ−2𝑗)∑
𝑖=0

(
𝑙𝑠 − 𝑗

𝑖

)
·
(
𝑖 + 𝑗
𝑗

)
· 𝑓 (𝑖, 𝑗) ·

(
𝑛 − 𝑙𝑠 − 𝑗

ℎ − 2 𝑗 − 𝑖

)
· 𝑓 (ℎ − 2 𝑗 − 𝑖, 𝑗)!

]
𝑓 (𝑖, 0) =!𝑖, 𝑓 (0, 𝑞) = 𝑞!

𝑓 (𝑖, 𝑗) =
min(𝑖, 𝑗)∑
𝑞=0

[(
𝑖

𝑞

)
·
(
𝑗

𝑗 − 𝑞

)
· 𝑗 ! · 𝑓 (𝑖 − 𝑞, 𝑞)

]
𝑙𝑠 = |𝑆 |, 𝑘 = (1 − 𝜂) · 𝑙𝑠 , !𝑛 = ⌊𝑛!

𝑒
+ 1

2

⌋

Proof. Let 𝑙𝑠 = |𝑆 | denote the size of the set 𝑆 and 𝑘 = ⌈(1 −
𝜂) · 𝑙𝑆 ⌉ denote the maximum number of correct values that can

be missing from 𝑆 . Now, for a given permutation 𝜎 ∈ S𝑛 , let ℎ

denote its Hamming distance from the reference permutation 𝜎0,

i.e, ℎ = d𝐻 (𝜎, 𝜎0). This means that 𝜎 and 𝜎0 differ in ℎ indices. Now,

ℎ can be analysed in the the following two cases,

Case I. ℎ ≤ 2𝑘 + 1

For (1 − 𝜂) fraction of indices to be removed from 𝑆 , we need at

least 𝑘 + 1 indices from 𝑆 to be replaced by 𝑘 + 1 values from outside

𝑆 . This is clearly not possible for ℎ ≤ 2𝑘 + 1. Hence, here 𝑐ℎ = 0.

Case II. ℎ > 2𝑘

For the following analysis we consider we treat the permuta-

tions as strings (multi-digit numbers are treated as a single string

character). Now, Let S𝜎0
denote the non-contiguous substring of

𝜎0 such that it consists of all the elements of 𝑆 , i.e.,

|S| = 𝑙𝑆 (8)

∀𝑖 ∈ [𝑙𝑆 ], S𝜎0
[𝑖] ∈ 𝑆 (9)

Let S𝜎 denote the substring corresponding to the positions occupied

by S𝜎0
in 𝜎 . Formally,

|S𝜎 | = 𝑙𝑆 (10)

∀𝑖 ∈ [𝑙𝑆 ], S𝜎0
[𝑖] = 𝜎 (𝜎−1

0
(S𝜎0

[𝑖])) (11)

For example, for 𝜎0 = (1 2 3 5 4 7 8 10 9 6), 𝜎 = (1 3 2 7 8 5 4 6 10 9)
and 𝑆 = {2, 4, 5, 8}, we have S𝜎0

= 2548 and 𝑆𝜎 = 3784 where

ℎ = d𝐻 (𝜎, 𝜎0) = 9. Let {S𝜎 } denote the set of the elements of

string S𝜎 . Let 𝐴 be the set of characters in S𝜎 such that they do not

belong to 𝑆 , i.e, 𝐴 = {S𝜎 [𝑖] |S𝜎 [𝑖] ∉ 𝑆, 𝑖 ∈ [𝑙𝑆 ]}. Let 𝐵 be the set of

characters in S𝜎 that belong to 𝑆 but differ from S𝜎0
in position, i.e.,

𝐵 = {S𝜎 [𝑖] |S𝜎 [𝑖] ∈ 𝑆, S𝜎 [𝑖] ≠ S𝜎0
[𝑖], 𝑖 ∈ [𝑙𝑆 ]}. Additionally, let

𝐶 = 𝑆 − {S𝜎 }. For instance, in the above example, 𝐴 = {3, 7}, 𝐵 =

{4, 8},𝐶 = {2, 5}. Now consider an initial arrangement of 𝑝 +𝑚
distinct objects that are subdivided into two types – 𝑝 objects of

Type A and m objects of Type B. Let 𝑓 (𝑝,𝑚) denote the number of

permutations of these 𝑝 +𝑚 objects such that the𝑚 Type B objects

can occupy any position but no object of Type A can occupy its

original position. For example, for 𝑓 (𝑝, 0) this becomes the number

of derangements [1] denoted as !𝑝 = ⌊ 𝑝!

𝑒 + 1

2
⌋. Therefore, 𝑓 ( |𝐵 |, |𝐴|)

denotes the number of permutations of S𝜎 such that d𝐻 (S𝜎0
, S𝜎 ) =

|𝐴| + |𝐵 |. This is because if elements of 𝐵 are allowed to occupy

their original position then this will reduce the Hamming distance.

Now, let
¯S𝜎 (

¯S𝜎0
) denote the substring left out after extracting

from S𝜎 (S𝜎0
) from 𝜎 (𝜎0). For example,

¯S𝜎 = 1256109 and
¯S𝜎0

=

1371096 in the above example. Let 𝐷 be the set of elements outside

of 𝑆 and 𝐴 that occupy different positions in
¯S𝜎 and

¯S𝜎0
(thereby

contributing to the hamming distance), i.e., 𝐷 = {¯S𝜎0 [𝑖 ] | ¯S𝜎0 [𝑖 ] ∉
𝑆, ¯S𝜎0 [𝑖 ] ≠

¯S𝜎 [𝑖 ] , 𝑖 ∈ [𝑛 − 𝑙𝑆 ]}. For instance, in the above example

𝐷 = {9, 6, 10}. Hence, ℎ = d𝐻 (𝜎, 𝜎0) = |𝐴| + |𝐵 | + |𝐶 | + |𝐷 | and
clearly 𝑓 ( |𝐷 |, |𝐶 |) represents the number of permutations of

¯S𝜎
such that d𝐻 ( ¯S𝜎 , ¯S𝜎0

) = |𝐶 | + |𝐷 |. Finally, we have

𝑐ℎ =

max(𝑙𝑠 , ⌊ℎ/2⌋)∑
𝑗=𝑘+1

(
𝑙𝑠

𝑗

)
︸︷︷︸

# ways of selecting set𝐶

·
(
𝑛 − 𝑙𝑠
𝑗

)
︸   ︷︷   ︸

# ways of selecting set 𝐴

·
[

min(𝑙𝑠−𝑗,ℎ−2𝑗)∑
𝑖=0

(
𝑙𝑠 − 𝑗

𝑖

)
︸  ︷︷  ︸

# ways of selecting set 𝐵

·𝑓 (𝑖, 𝑗)

·
(
𝑛 − 𝑙𝑠 − 𝑗

ℎ − 2 𝑗 − 𝑖

)
︸        ︷︷        ︸

# ways of selecting set 𝐷

·𝑓 (ℎ − 2 𝑗 − 𝑖, 𝑗)
]

Now, for 𝑓 (𝑖, 𝑗) let 𝐸 be the set of original positions of Type A

that are occupied by Type B objects in the resulting permutation.

Additionally, let 𝐹 be the set of the original positions of Type B

objects that are still occupied by some Type B object. Clearly, Type B

objects can occupy these |𝐸 |+|𝐹 | =𝑚 in anyway they like. However,

the type A objects can only result in 𝑓 (𝑝 − 𝑞, 𝑞) permutations.

Therefore, 𝑓 (𝑝,𝑚) is given by the following recursive function

𝑓 (𝑝, 0) =!𝑝

𝑓 (0,𝑚) =𝑚!

𝑓 (𝑝,𝑚) =
min𝑝,𝑚∑
𝑞=0

( (
𝑝

𝑞

)
︸︷︷︸

# ways of selecting set 𝐸

·
(
𝑚

𝑚 − 𝑞

)
︸   ︷︷   ︸

# ways of selecting set 𝐹

·𝑚! · 𝑓 (𝑝 − 𝑞, 𝑞)
)

Thus, the total probability of failure is given by

𝛿 =
1

𝜓 (𝜃, d𝐻 )

𝑛∑
ℎ=2𝑘+2

(𝑒−𝜃 ·ℎ · 𝑐ℎ) (12)

□



6 EVALUATION
6.1 Additional Experimental

Results/Explanation
The previous sections describe how our shuffling framework in-

terpolates between standard LDP and uniform random shuffling.

We now experimentally evaluate this asking the following two

questions –

Q1.Does the Alg. 1 mechanism protect against realistic inference

attacks?

Q2. How well can Alg. 1 tune a model’s ability to learn trends

within the shuffled data i.e. tune data learnability?
We evaluate on four datasets. We are not aware of any prior

work that provides comparable local inferential privacy. Hence, we

baseline our mechanism with the two extremes: standard LDP and

uniform random shuffling. For concreteness, we detail our proce-

dure with the PUDF dataset [2] (license), which comprises 𝑛 ≈ 29k

psychiatric patient records from Texas. Each data owner’s sensitive

value 𝑥𝑖 is their medical payment method, which is reflective of

socioeconomic class (such as medicaid or charity). Public auxiliary

information 𝑡 ∈ T is the hospital’s geolocation. Such information

is used for understanding how payment methods (and payment

amounts) vary from town to town for insurances in practice [20].

Uniform shuffling across Texas precludes such analyses. Standard

LDP risks inference attacks, since patients attending hospitals in

the same neighborhood have similar socioeconomic standing and

use similar payment methods, allowing an adversary to correlate

their noisy 𝑦𝑖 ’s. To trade these off, we apply Alg. 1 with 𝑑 (·) be-
ing distance (km) between hospitals, 𝛼 = 4 and Kendall’s 𝜏 rank

distance measure for permutations.

Our inference attack predicts DO𝑖 ’s 𝑥𝑖 by taking a majority vote

of the 𝑧 𝑗 values of the 25 data owners within 𝑟∗ of 𝑡𝑖 and who are

most similar to DO𝑖 w.r.t some additional privileged auxiliary in-

formation 𝑡
𝑝

𝑗
∈ T𝑝 . For PUDF, this includes the 25 data owners who

attended hospitals that are within 𝑟∗ km of DO𝑖 ’s hospital, and are

most similar in payment amount 𝑡
𝑝

𝑗
. Using an 𝜖 = 2.5 randomized

response mechanism, we resample the LDP sequence y 50 times,

and apply Alg. 1’s chosen permutation to each, producing 50 z’s.
We then mount the majority vote attack on each 𝑥𝑖 for each z. If the
attack on a given 𝑥𝑖 is successful across ≥ 90% of these LDP trials,

we mark that data owner as vulnerable – although they randomize

with LDP, there is a ≥ 90% chance that a simple inference attack

can recover their true value. We record the fraction of vulnerable

data owners as 𝜌 . We report 1-standard deviation error bars over

10 trials.

Additionally, we evaluate data learnability – how well the under-

lying statistics of the dataset are preserved across T . For PUDF, this
means training a model on the shuffled z to predict the distribution
of payment methods used near, for instance, 𝑡𝑖 = Houston for DO𝑖 .

For this, we train a calibrated model, : T → D𝑥 , on the shuffled

outputs where D𝑥 is the set of all distributions on the domain of

sensitive attributesX. We implement as a gradient boosted decision

tree (GBDT) model [24] calibrated with Platt scaling [41]. For each

location 𝑡𝑖 , we treat the empirical distribution of 𝑥𝑖 values within

𝑟∗ as the ground truth distribution at 𝑡𝑖 , denoted by E(𝑡𝑖 ) ∈ D𝑥 .

Then, for each 𝑡𝑖 , we measure the Total Variation error between

the predicted and ground truth distributions TV

(
E(𝑡𝑖 ),𝑟 (𝑡𝑖 )

)
. We

then report 𝜆(𝑟 ) – the average TV error for distributions predicted

at each 𝑡𝑖 ∈ t normalized by the TV error of naively guessing the

uniform distribution at each 𝑡𝑖 . With standard LDP, this task can

be performed relatively well at the risk of inference attacks. With

uniformly shuffled data, it is impossible to make geographically

localized predictions unless the distribution of payment methods is

identical in every Texas locale.

We additionally perform the above experiments on the following

three datasets

• Adult [17]. This dataset is derived from the 1994 Census and has ≈
33K records. Whether DO𝑖 ’s annual income is ≥ 50k is considered

private, X = {≥ 50𝑘, < 50𝑘}. T = [17, 90] is age and T𝑃 is the

individual’s marriage status.

• Twitch [42]. This dataset, gathered from the Twitch social media

platform, includes a graph of≈ 9𝐾 edges (mutual friendships) along

with node features. The user’s history of explicit language is private

X = {0, 1}. T is a user’s mutual friendships, i.e. 𝑡𝑖 is the 𝑖’th row

of the graph’s adjacency matrix. We do not have any T𝑃 here, and

select the 25 nearest neighbors randomly.

• Syn. This is a synthetic dataset of size 20𝐾 which can be classified

at three granularities – 8-way, 4-way and 2-way. The eight color

labels are private X = [8]; the 2D-positions are public T = R2
. For

learnability, we measure the accuracy of 8-way, 4-way and 2-way

GBDT models trained on z on an equal sized test set at each 𝑟 .

Experimental Results.
Q1. Our formal guarantee on the inferential privacy loss (Thm. 5.3)

is described w.r.t to a ‘strong’ adversary (with access to {𝑦𝐺𝑖
}, y

𝐺𝑖
).

Here, we test how well does our proposed scheme (Alg. 1) protect

against inference attacks on real-world datasets without any such

assumptions. Additionally, to make our attack more realistic, the

adversary has access to extra privileged auxiliary information T𝑃
which is not used by Alg. 10. Fig. 5a→ 5c show that our scheme

significantly reduces the attack efficacy. For instance, 𝜌 is reduced

by 2.7𝑋 at the attack distance threshold 𝑟∗ for PUDF. Additionally,
𝜌 for our scheme varies from that of LDP2 (minimum privacy) to

uniform shuffle (maximum privacy) with increasing 𝑟 (equivalently

group size as in Fig. 5c) thereby spanning the entire privacy spec-

trum. As expected, 𝜌 decreases with decreasing privacy parameter

𝛼 (Fig. 5d).

Q2. Fig.5e→ 5g show that 𝜆 varies from that of LDP (maximum

learnability) to that of uniform shuffle (minimum learnability) with

increasing 𝑟 (equivalently, group size), thereby providing tunability.

Interestingly, for Adult our scheme reduces 𝜌 by 1.7𝑋 at the same

𝜆 as that of LDP for 𝑟 = 1 (Fig. 5f). Fig. 5h shows that the distance

threshold 𝑟 defines the granularity at which the data can be classi-

fied. LDP allows 8-way classification while uniform shuffling allows

none. The granularity of classification can be tuned by our scheme

– 𝑟8, 𝑟4 and 𝑟2 mark the thresholds for 8-way, 4-way and 2-way

classifications, respectively.

6.1.1 Evaluation of (𝜂, 𝛿)-preservation. In this section, we eval-

uate the characteristics of the (𝜂, 𝛿)-preservation for Kendall’s 𝜏

distance d𝜏 (·, ·).
2
Our scheme gives lower 𝜌 than LDP at 𝑟 = 0 because the resulting groups are non-

singletons. For instance, for PUDF,𝐺𝑖 includes all individuals with the same zipcode

as DO𝑖 .

https://www.dshs.state.tx.us/THCIC/Hospitals/Download.shtm
https://archive.ics.uci.edu/ml/datasets/Adult
http://snap.stanford.edu/data/twitch-social-networks.html


(a) PUDF : Attack (b) Adult: Attack (c) Twitch: Attack (d) Adult: Attack (𝛼 )

(e) PUDF : Learnability (f) Adult: Learnability (g) Twitch: Learnability (h) Syn: Learnability

Figure 5: Our scheme interpolates between standard LDP (orange line) and uniform shuffling (blue line) in both privacy and data learnability. All plots increase

group size along x-axis (except (d)). (a) → (c): The fraction of participants vulnerable to an inferential attack. (d): Attack success with varying 𝛼 for a fixed 𝑟 .

(e) → (g): The accuracy of a calibration model trained on z predicting the distribution of LDP outputs at any point 𝑡 ∈ T , such as the distribution of medical

insurance types used specifically in the Houston area (not possible when uniformly shuffling across Texas). (h): Test accuracy of a classifier trained on z for a
synthetic dataset based on the crescents synthetic distribution.

Each sweep of Fig. 6 fixes 𝛿 = 0.01, and observes 𝜂. We consider

a dataset of size 𝑛 = 10𝐾 and a subset 𝑆 of size 𝑙𝑆 corresponding to

the indices in the middle of the reference permutation 𝜎0 (the actual

value of the reference permutation is not significant for measuring

preservation). For the rest of the discussion, we denote the width

of a permutation by 𝜔 for notational brevity. For each value of

the independent axis, we generate 50 trials of the permutation 𝜎

from a Mallows model with the appropriate 𝜃 (given the 𝜔 and

𝛼 parameters). We then report the largest 𝜂 (fraction of subset

preserved) that at least 99% of trials satisfy.

In Fig. 6a, we see that preservation is highest for higher 𝛼 and

increases gradually with declining width 𝜔 and increasing subset

size 𝑙𝑠 .

Fig. 6b demonstrates that preservation declines with increasing

width. Δ increases quadratically with width 𝜔 for d𝜏 , resulting in
declining 𝜃 and increasing randomness. We also see that larger

subset sizes result in a more gradual decline in 𝜂. This is due to

the fact that the worst-case preservation (uniform random shuf-

fling) is better for larger subsets. i.e. we cannot do worse than 80%

preservation for a subset that is 80% of indices.

Finally, Fig. 6c demonstrates how preservation grows rapidly

with increasing subset size. For large widths, we are nearly uni-

formly randomly permuting, so preservation will equal the size of

the subset relative to the dataset size. For smaller widths, we see

that preservation offers diminishing returns as we grow subset size

past some critical 𝑙𝑠 . For 𝜔 = 30, we see that subset sizes much

larger than a quarter of the dataset gain little in preservation.

6.2 Related Work
In this section, we discuss the relevant existing work.

The anonymization of noisy responses to improve differential

privacy was first proposed by Bittau et al. [10] who proposed a prin-

cipled system architecture for shuffling. This model was formally

studied later in [12, 21]. Erlingsson et al. [21] showed that for arbi-

trary 𝜖-LDP randomizers, random shuffling results in privacy ampli-

fication. Cheu et al. [12] formally defined the shuffle DP model and

analyzed the privacy guarantees of the binary randomized response

in this model. The shuffle DP model differs from our approach in

two ways. First, it focuses completely on the DP guarantee. The pri-

vacy amplification is manifested in the from of a lower 𝜖 (roughly a

factor of

√
𝑛) when viewed in an alternativeDPmodel known as the

central DP model. [6, 7, 10, 12, 21, 23]. However, our result caters

to local inferential privacy. Second, the shuffle model involves an

uniform random shuffling of the entire dataset. In contrast, our

approach the granularity at which the data is shuffled is tunable

which delineates a threshold for the learnability of the data.

A steady line of work has sudied the inferential privacy setting

[14, 18, 28, 32, 35, 46]. Kifer et al. [35] formally studied privacy

degradation in the face of data correlations and later proposed a

privacy framework, Pufferfish [31, 36, 43], for analyzing inferential

privacy. Subsequently, several other privacy definitions have also

been proposed for the inferential privacy setting [8, 11, 38, 50, 52].

For instance, Gehrke et al. proposed a zero-knowledge privacy

[25, 26] which is based on simulation semantics. Bhaskar et al.

proposed noiseless privacy [9, 30] by restricting the set of prior

distributions that the adversary may have access to. A recent work

by Zhang et al. proposes attribute privacy [51] which focuses on



the sensitive properties of a whole dataset. In another recent work,

Ligett et al. study a relaxation of DP that accounts for mechanisms

that leak some additional, bounded information about the database

[37]. Some early work in local inferential privacy include profile-

based privacy [27] by Gehmke et al. where the problem setting

comes with a graph of data generating distributions, whose edges

encode sensitive pairs of distributions that should be made indistin-

guishable. In another work by Kawamoto et al., the authors propose

distribution privacy [33] – local differential privacy for probability

distributions. The major difference between our work and prior

research is that we provide local inferential privacy through a new

angle – data shuffling.

(a) Variation with 𝛼

(b) Variation with 𝜔 ; 𝛼 = 3

(c) Variation with 𝑙𝑆 ; 𝛼 = 3

Figure 6: (𝜂, 𝛿)-Preservation Analysis
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