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ABSTRACT
Privacy concerns in client-server machine learning have given rise
to private inference (PI), where neural inference occurs directly on
encrypted inputs. PI protects clients’ personal data and the server’s
intellectual property. A common practice in PI is to use garbled
circuits to compute nonlinear functions privately, namely ReLUs.
However, garbled circuits suffer from high storage, bandwidth, and
latency costs. To mitigate these issues, PI-friendly polynomial acti-
vation functions have been employed to replace ReLU. In this work,
we ask: Is it feasible to substitute all ReLUs with low-degree polyno-
mial activation functions for building deep, privacy-friendly neural
networks? We explore this question by analyzing the challenges
of substituting ReLUs with polynomials, starting with simple drop-
and-replace solutions to novel, more involved replace-and-retrain
strategies. We examine the limitations of each method and provide
commentary on the use of polynomial activation functions for PI.
We find all evaluated solutions suffer from the escaping activation
problem: forward activation values inevitably begin to expand at
an exponential rate away from stable regions of the polynomials,
which leads to exploding values (NaNs) or poor approximations.

1 INTRODUCTION
The growing adoption of Machine Learning as a Service (MLaaS)
[22] has given rise to privacy concerns of clients’ personal data and
the intellectual property (i.e., trained models) of service providers.
To address these concerns, techniques such as different privacy
[1, 12], federated learning [4, 26], secure enclaves [11, 53], homo-
morphic encryption (HE) [14], and multiparty computation (MPC)
[48] aim to prevent both the server from accessing the client’s sen-
sitive data and the client from learning the server’s model. One area
of study within privacy-preserving machine learning (PPML) at-
tempts to perform inference directly on encrypted data using either
HE [16, 37, 47] or MPC-based techniques such as Secret Sharing (SS)
[6, 7, 36, 40, 41, 44–46]. Common PI protocols employ HE/SS for
processing linear operations (e.g., convolutions and fully connected
layers) and garbled circuits for nonlinear operations (e.g., ReLU and
maxpool) [23, 24, 31, 32, 34, 43].

Garbled circuits are a major source of inefficiency when per-
forming PI for the following reasons: (1) in PI, unlike plaintext
inference, ReLU garbled circuits dominate the runtime and can
be orders of magnitude more costly than linear layers computed
with SS [15, 34]; (2) a single ReLU operation using garbled circuits
requires 17.5 KB of data storage and communication, and a single
inference on state-of-the-art DNNs (such as ResNet50 [18]) requires
millions of ReLU computations that leads to hundreds of GiB of
data storage and communication [43]. These inefficiencies exist
for variants of ReLU such as leaky ReLU [33], parametric ReLU

Table 1: Effectiveness of polynomial activations proposed for ciphertext
training/inference on MNIST, CIFAR-10 (C10), CIFAR-100 (C100), and Tiny-
ImageNet (Tiny) datasets. * denotes the full ImageNet dataset.

Method Degree Partial/Full Datasets

MNIST C10 C100 Tiny
CryptoNet [16] 2 Full Y N N N

Lookup Table [52] 2 Full Y N N N
Polyfit [5] 2, 4, 6 Full Y N N N

SecureML [37] 2 Full Y N N N
FCryptoNet [9] 2 Full Y Y N N
CryptoDL [20] 2, 3 Full Y Y N N
HCNN [2] 2 Full Y Y N N

DELPHI [34] 2 Partial Y Y Y N
SAFENet [32] 2, 3 Partial N Y Y N

PreciseApprox [30] 29 Full N Y N Y∗
QuaIL (Ours) 2 Full Y Y Y Y

[17], RReLU [54], CReLU [49], and the recently proposed DY-ReLU
[8]. Furthermore, storage and latency costs of GCs are exacerbated
when used to compute more expressive and complex activation
functions such as ELU [10], SELU [25], Swish [42], GELU [19] and
Mish [35].

The aforementioned challenges and inefficiencies of nonlinear
computations using garbled circuits have driven researchers to de-
sign alternative activation functions that are cheaper to compute
under PI. In particular, polynomial functions, which require only
simple addition and multiplication, eliminate the need for garbled
circuits and have become the de-facto solution for replacing ReLUs
in neural networks. In fact, replacing all ReLUs with 𝑥2 (denoted
Quad here) can reduce online latency and communication dramati-
cally by up to 2843× and 256×, respectively [34].

Table 1 summarizes prior work using polynomial activation
functions for PI. The partial/full distinction indicates whether the
solution replaces some or all ReLU activations with polynomials.
We find that prior work can be classified into three categories: full
replacement using small datasets/models (e.g,. MNIST [29], CIFAR-
10 [27]) [2, 5, 9, 16, 20, 37, 52], partial replacement on mid-sized
models (e.g., CIFAR-100) [32, 34], and full-replacement on large
models using very-high degree approximations [30]. Each of the
solutions significantly advanced our understanding of the problem
and the capabilities of PI. However, none have demonstrated full re-
placement on large datasets/models using low-degree polynomials,
which we believe is the ideal solution.

In this paper, we set out to replace all ReLUs with low-degree
polynomials. Specifically, we test two drop-and-replace solutions
(Taylor Approximation and Polynomial Regression Approximation)
and develop two novel replace-and-retrain strategies (QuaIL and



QuaIL+ApproxMinMax) on a wide range of networks and datasets.
Our contribution can be summarized as follows:

(1) We propose Quadratic Imitation Learning (QuaIL), a train-
ing setup inspired by dynamic programming to gradually
build neural networks with only polynomial activations and
introduce ApproxMinMaxNorm, a normalization strategy
that bounds pre-activation values during training and ap-
proximately bounds pre-activation values during inference.

(2) We implement and release Sisyphus, a set of methods for
wholesale ReLU replacement that range from simple drop-
and-replace solutions to replace-and-retrain strategies.

(3) We develop and rigorously evaluate four substitution strate-
gies using the Sisyphus framework and perform an in-depth
analysis of their efficacy for deep networks. Crucially, we
show that the instabilities of performing both inference and
training with polynomial activation functions become more
prominent in deeper neural networks and may not be ob-
served in shallower networks.

As we increase the complexity of the replacement strategy we
steadily progress towards training deeper, more accurate, PI-friendly
networks using only low-degree polynomial activations. Despite
our best efforts, we fall short of matching baseline ReLU network
performance due to the escaping activation problem: in all solutions,
forward-pass activation values inevitably escape the well-behaving
range of the polynomial activation function, leading to either ex-
ploding values (NaNs) or poor-behaving approximations.

Looking beyond QuaIL+ApproxMinMax (QuaIL+AMM), it may
be tempting to evaluate additional solutions. One way to overcome
the escaping activation problem in QuaIL would be to bound the
range. However, this requires a max function, which if we had,
we could simply use to compute ReLU in our networks. Recent
work proposed the Pade Activation Unit (PAU), a rational function
of two low-degree polynomials that performs well on complex
datasets [38]. Unfortunately, the division operation required by
PAUs is not natively supported by cryptographic primitives of
HE/SS and is known to be a challenge to implement. Another recent
work has proposed approximating ReLU and max-pooling using
very-high (e.g., 29) degree polynomials and reports competitive
accuracy for ImageNet [30]. However, high-degree polynomials
can be difficult to evaluate using cryptographic solutions as they
would introduce significant additional computation in both SS and
HE as well as noise growth in HE. Thus, we name this paper and
our framework Sisyphus, as each time a promising solution was
evaluated we incur a fundamental limitation that brought us back
to square one.

2 METHODOLOGY
We test the Sisyphus framework on the MNIST, CIFAR-10, CIFAR-
100, and TinyImageNet [55] datasets and test each substitution
strategy over a wide variety of networks: AlexNet [28], VGG-11/16
[50], ResNet18, MobileNetV1 [21], and ResNet32 [18]. We develop
and test our framework using PyTorch [39] (1.8.1+CUDA11.1), and
for performing Bayesian Optimization during Polynomial Regres-
sion Approximation, we utilize GPyTorch [13], and BoTorch [3].
All code for this paper is available online1.
1See: https://github.com/kvgarimella/sisyphus-ppml

3 SOLUTIONS AND RESULTS
In this section we present the solutions evaluated for replacing all
ReLUswith polynomial activation functions, including Taylor series
approximation, polynomial regression, QuaIL, and QuaIL+AMM.

3.1 Drop-and-Replace
3.1.1 Taylor Series Approximation.

Key Idea: A simple approach to approximating ReLU as a polyno-
mial is to use the Taylor Approximation. The Taylor approximation
estimates a differentiable function, 𝑓 , as a polynomial centered
around point 𝑎 (we choose 𝑎 = 0). This approximation is con-
structed using high-order derivatives, and in the case of ReLU, all
high-order derivative terms in the Taylor approximation vanish
as the second derivative of ReLU is 0 everywhere, resulting in a
simple approximation: ReLU(𝑥) ≈ 1

2𝑥 .
Setup: First, a baseline ReLU model is trained. We then replace all
ReLUs in the trained networks with the Taylor approximation and
measure the test accuracy for the network’s respective dataset.
Results: As evident in Table 2, the test accuracy deteriorates signif-
icantly for all networks except for the two layer MLP, which sees a
dip in test accuracy from 97.98% (using ReLU) to 86.28% (using the
Taylor approximation) on MNIST. Given that the Taylor approxi-
mation for ReLU is a simple linear function (𝑓 (𝑥) = 1

2𝑥 ), we expect
deeper networks to perform poorly when using the approximation
as an activation function.
Takeaway: Using the Taylor approximation of ReLU collapses
each network to a linear model, which restricts the network from
representing the non-linear mappings required to achieve a high
predictive performance on deeper networks and complex datasets.

3.1.2 Polynomial Regression Approximation.
Key Idea: A natural extension of the Taylor approximation is to
approximate ReLU using a polynomial over a range rather than
a single point. The polynomial fit to a function 𝑓 has the form
𝑓 (𝑥) = ®𝑤 · ®𝑥 , where ®𝑥 = (1, 𝑥1, 𝑥2, . . . , 𝑥𝐷 ) and 𝐷 is the order
of the polynomial. Polynomial regression can be employed to fit
a polynomial function to any non-linear function by minimizing
the mean squared error between the approximation and the target
function 𝑓 over a range [−𝑎, 𝑎] and order 𝐷 . For example if the
target function is ReLU, optimal coefficients𝑤0,𝑤1, . . . ,𝑤𝐷 can be
found by minimizing

𝐸 ( ®𝑤) =
∫ 𝑎

−𝑎

(
𝐷∑
𝑑=0

𝑤𝑑𝑥
𝑑 − ReLU(𝑥)

)2
𝑑𝑥. (1)

Setup: To find ®𝑤 that minimizes Equation 1, we first discretize
the integral using a granularity of 𝑑𝑥 = 1𝑒−3. The polynomial fit
heavily depends upon the order of the polynomial (𝐷) and the range
(𝑎) over which Equation 1 is minimized. To this end, we employ
Bayesian Optimization (BayesOpt) to efficiently select effective
values for 𝐷 and 𝑎 [51]. To accommodate a variety of polynomials,
we choose the range 𝑎 to vary between [0.5, 50] and the order of
the polynomial to vary over integer values between [2, 9].

Given a setting of {𝐷, 𝑎}, a ReLU approximation is found using
polynomial regression. All ReLUs in the original trained network
are then replaced with the approximation and we measure the
training accuracy. BayesOpt uses this accuracy to iteratively update
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Figure 1: An overview of the QuaIL setup for a simple three-layer network. 1) Train a baseline network with the ReLU activation function. 2) Clone the
first layer of the ReLU network, copy over the trained weights, and replace ReLU with Quad. Minimize the M.S.E. loss between the first-layer intermediate
representations of the two networks and backpropagate through the Quad network. 3) Repeat this process for each subsequent layer (while freezing the
previous layers) until the full baseline network is cloned. 4-5) Fine-tune the Quad network by gradually unfreezing layers and training with standard C.E. Loss.

its probabilistic model and find well performing values of 𝑎 and
𝐷 . We run BayesOpt for 50 iterations (10 random values to seed
the probabilistic model and 40 optimized values) for each network
and dataset. Finally, we replace all ReLUs in each network with the
most accurate polynomial fit and measure the test accuracy.
Result: Table 2 displays the test accuracy for evaluating each
network using the polynomial activation function produced by
BayesOpt. Evaluating networks using non-linear polynomials intro-
duces unbounded forward activations that compound exponentially
with network depth, which we call escaping activations. Especially
for deeper networks, it is possible to generate forward activation
values that overflow their floating point representations, which
results in a NaN. We consider output logits that contain NaN val-
ues to be incorrect predictions. For this reason, two accuracies are
presented in some rows of the polynomial regression experiments.
Accuracies in parenthesis represent the test accuracy when only
considering inputs that do not overflow in forward activation val-
ues. Using polynomial regression, we are able to progress to a high
accuracy on LeNet, a five-layer network.
Takeaway: Simply replacing all ReLUs with accurate polynomial
approximations that are both low-degree and non-linear fails to
work for most deeper networks due to the escaping activation prob-
lem in which forward activation values grow exponentially, leading
to instability in inference.

3.2 Replace-and-Retrain
3.2.1 Quadratic Imitation Learning (QuaIL).

Key Idea: The escaping activation problem encountered when
using the polynomial regression strategy was directly caused by
the compounding use of polynomials in deeper networks. Specifi-
cally, after each pass through the polynomial activation, the output
intermediate representation values began to grow exponentially.
Following several layers (several passes through the polynomial
activations), the intermediate representation values escaped the
well-behaving regions of the polynomials and resulted in exploding
values (NaNs). The escaping nature of intermediate representa-
tions suggests to elevate from simple drop-and-replace strategies
to replace-and-retrain strategies which mitigate the escaping ac-
tivation problem. Rather than attempting to train a network with
polynomial activations end-to-end by minimizing the loss between

ground truth and predictions, Quadratic Imitation Learning (QuaIL)
iteratively builds and trains a neural network with polynomial ac-
tivations by mimicking the intermediate representation values of
a trained ReLU network. Similar to dynamic programming, QuaIL
attempts to first solve a sub-problem by mimicking intermediate
representation values of a well-behaving network before adding ad-
ditional layers to a network using polynomial activations. In QuaIL,
the polynomial activation function is set to 𝑓 (𝑥) = 𝑥2 (Quad).
Setup: Figure 1 depicts the QuaIL training process. First, a ReLU
baseline network is trained using standard supervised learning
techniques (Fig. 1.1). Then, the first layer of the ReLU network is
duplicated and the layer’s ReLUs are replaced with Quad. Here,
the Quad network is trained by minimizing the Mean Square Er-
ror (M.S.E.) between the first-layer intermediate representations of
both networks (Fig. 1.2). In this way, the single-layer Quad network
learns to predict similar first-layer representations as the ReLU
network. After training converges to a low M.S.E. between the
two intermediate representations, the Quad network’s first-layer
weights are frozen and the second layer of the ReLU network is
cloned and stacked onto the Quad network. Again, ReLU is replaced
by Quad for the second layer. Similar to the first layer, the Quad
network now minimizes the M.S.E. between the second-layer repre-
sentations of both networks. This process is repeated until the final
layer of the ReLU network has been added to the Quad network and
the error between the final representations is minimized (Fig. 1.3).

At this stage, the Quad network is trained using standard super-
vising learning while gradually unfreezing shallower layers. In the
image classification setting, the Cross Entropy (C.E.) loss is mini-
mized between ground truth labels and predictions (Fig. 1.4- 1.5).
Result: QuaIL further extends our progress of building deep, PI-
friendly networks to AlexNet and VGG11 on the CIFAR-10, CIFAR-
100, and TinyImageNet datasets. Each of these networks that only
uses the Quad activation function are built up iteratively to limit the
effect of escaping activations. However, QuaIL fails to generalize to
even deeper networks as even a small difference in the intermediate
representations at earlier stages of the deeper networks propagate
forward leading to escaping activations and causing training to
diverge (denoted as — in Table 2).
Takeaway: QuaIL allows us to iteratively build deep (up to 11-
layer) networks with only the Quad activation function but fails to

3



Table 2: Accuracy when all ReLUs in the networks are substituted with
Taylor series approximation (T-Approx.), polynomial regression approxima-
tion (Poly-Reg.), QuaIL, and QuaIL+AMM on CIFAR-10/100 (C-10/100) and
TinyImageNet (Tiny) datasets.

Dataset-Net Baseline T-Approx. Poly-Reg. Quail Quail+AMM
MNIST-MLP 97.98 86.28 97.88 98.20 98.17
MNIST-LeNet 99.32 9.81 99.14 99.45 99.26

C10-AlexNet 85.47 12.90 1.28 (71.11) 79.94 79.32
C10-VGG11 90.46 13.68 8.49 (82.83) 82.19 82.85
C10-VGG16 92.78 16.01 13.31 (87.57) — 82.25 (82.63)
C10-ResNet18 93.21 1.00 13.64 — 83.61 (85.72)
C10-MobileNetV1 91.70 11.04 11.13 10.00 48.03 (49.45)
C10-ResNet32 91.72 26.96 90.48 (90.62) — 56.93 (71.81)

C100-AlexNet 60.98 1.73 21.51 (31.8) 54.83 50.76
C100-VGG11 68.36 1.88 3.74 52.08 55.53
C100-VGG16 71.44 1.74 0.94 (52.81) — 54.56 (55.03)
C100-ResNet18 74.39 1.00 1.00 — 65.17 (66.30)
C100-MobileNetV1 65.00 1.00 25.8 — 0.92 (01.09)
C100-ResNet32 67.83 4.28 66.31 — 19.86 (28.58)

Tiny-AlexNet 51.65 0.51 1.70 (8.98) 38.95 36.24
Tiny-VGG11 55.36 0.66 0.5 37.59 44.63 (44.68)
Tiny-VGG16 58.88 0.45 00.56 (3.07) — 45.76 (46.47)
Tiny-ResNet18 61.59 0.50 0.5 — 49.45 (53.82)
Tiny-MobileNetV1 56.16 0.76 0.46 — 13.43 (22.75)
Tiny-ResNet32 54.77 2.04 47.55 — 7.16 (10.60)

mitigate unstable intermediate representations for even deeper net-
works and thus still suffers from escaping activations. For example,
a ResNet-18 network trained using the QuaIL setup experiences ex-
ploding gradients due to escaping activations in latter intermediate
representations and is unable to converge during training.

3.2.2 Approximate MinMax Normalization.
Key Idea: The escaping activation problem encountered during
QuaIL illustrates the need to bound pre-activation values to train
networks using low-degree polynomial activation functions, es-
pecially for deeper neural networks. To do this we developed Ap-
proximate Min-Max Normalization (ApproxMinMaxNorm), which
places upper and lower constraints on pre-activation values during
training by performing a dimension-wise Min-Max normalization:

𝑥 = 𝛼
𝑥 −min𝑥

max𝑥 −min𝑥
− 𝛽 (2)

where 𝛼 and 𝛽 are scaling parameters. During the training phase,
approximations of minimums and maximums are calculated and
stored using a weighted moving average of the true minimums and
maximums (we use a smoothing factor of 1/10). When performing
inference, these stored approximations are then used to perform
approximate normalization.
Setup: ApproxMinMaxNorm is combined with the QuaIL training
procedure; when building the Quad network, ReLU is replaced by
an ApproxMinMaxNorm layer immediately followed by Quad.
Result: We observe stable training for all networks and datasets
using QuaIL+AMM. However, at inference time, when using the
approximated values of the minimums and maximums for each
layer, we again detect the escaping activation problem, albeit to a
less degree when compared to the drop-and-replace polynomial
regression strategy.
Takeaway: ApproxMinMaxNorm prevents the escaping activation
problem at training time by explicitly bounding the pre-activation
values to polynomial activations. However, the escaping activation
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Figure 2: Comparison of maximum forward activation values after each
nonlinear layer at inference time using Quail+AMM (ApproxMinMax),
Quail+MM (TrueMinMax), and an all-ReLU baseline ResNet-18.

problem returns during inference due to approximate minimum and
maximum calculations. Thus a true maximum function is required
at test time to guarantee bounds on pre-activation values.

4 DISCUSSION
The desirable properties of PI-friendly ReLU substitutions are: low
multiplicative depth, stability over a sufficiently large range of ac-
tivation values, and competitive performance when compared to
networks with ReLUs. The Quad activation function has been con-
sidered a promising solution as its multiplicative depth is one and
exhibits stability for simple models and datasets, e.g., MNIST [16].
However, for deeper networks and larger datasets, the desired sta-
bility range of pre-activation values increases significantly [30] and
using Quad in this extended range results in imprecise approxima-
tions of ReLU and poor accuracy [5]. Consequently, higher-degree
polynomials are used for more accurate approximation, but suffer
from a higher multiplicative depth that results in additional compu-
tation (in SS/HE) and noise growth (HE), thus limiting their efficacy
in practical settings.

To help mitigate these issues, we devised QuaIL where each layer
in the Quad-network learns to mimic intermediate representations
of a trained, all-ReLU network. QuaIL worked well for AlexNet and
VGG11, which polynomial regression under-performed; however,
it did not scale to even deeper networks. To understand why, we
dug deeper and found the issue still to be escaping activations. That
is, some intermediate representation values still began to grow
unbounded. To mitigate escaping activations at training time, we
bounded the pre-activation values inputs using an ApproxMinMax
normalization strategy, which achieved reasonable accuracies for all
the networks except MobileNetV1 and ResNet32. However since the
maximum and minimum values were approximated at inference
time, the approximation error grew in deeper layers and some
activations began to explode (shown in Figure 2 as Quail+AMM).
For a better understanding, we replaced the approximated min
and max with the true min and max during inference (termed
as QuaIL+MM in Figure 2) and observed that the intermediate
representation values were now similar to that of the all-ReLU
baseline networks.

Fundamentally, the efficacy of using low-degree polynomials
for deeper networks on complex datasets boils down to bounding
input values to the the polynomial activations in order to mitigate
escaping activations, which requires using exact calculations of both
theminimum andmaximum. However, the issue of calculating exact
minimums and maximums brings us back full circle to the problem
we were trying to solve: remove all ReLUs (which is defined using
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maximum) to prevent the usage of garbled circuits in PI. We hope
the insights gained from Sisyphus aid the PPML community in
being mindful when using low-degree polynomial activations in
PI-friendly networks.
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