
Sisyphus: A Cautionary Tale of Using Low-Degree Polynomial
Activations in Privacy-Preserving Deep Learning

Karthik Garimella, Nandan Kumar Jha, Brandon Reagen
New York University

{kg2383,nj2049,bjr5}@nyu.edu

ABSTRACT
Privacy concerns in client-server machine learning have given rise
to private inference (PI), where neural inference occurs directly on
encrypted inputs. PI protects clients’ personal data and the server’s
intellectual property. A common practice in PI is to use garbled
circuits to compute nonlinear functions privately, namely ReLUs.
However, garbled circuits suffer from high storage, bandwidth, and
latency costs. To mitigate these issues, PI-friendly polynomial acti-
vation functions have been employed to replace ReLU. In this work,
we ask: Is it feasible to substitute all ReLUs with low-degree polyno-
mial activation functions for building deep, privacy-friendly neural
networks? We explore this question by analyzing the challenges
of substituting ReLUs with polynomials, starting with simple drop-
and-replace solutions to novel, more involved replace-and-retrain
strategies. We examine the limitations of each method and provide
commentary on the use of polynomial activation functions for PI.
We find all evaluated solutions suffer from the escaping activation
problem: forward activation values inevitably begin to expand at
an exponential rate away from stable regions of the polynomials,
which leads to exploding values (NaNs) or poor approximations.

1 INTRODUCTION
The growing adoption of Machine Learning as a Service (MLaaS)
[22] has given rise to privacy concerns of clients’ personal data and
the intellectual property (i.e., trained models) of service providers.
To address these concerns, techniques such as different privacy
[1, 12], federated learning [4, 26], secure enclaves [11, 53], homo-
morphic encryption (HE) [14], and multiparty computation (MPC)
[48] aim to prevent both the server from accessing the client’s sen-
sitive data and the client from learning the server’s model. One area
of study within privacy-preserving machine learning (PPML) at-
tempts to perform inference directly on encrypted data using either
HE [16, 37, 47] or MPC-based techniques such as Secret Sharing (SS)
[6, 7, 36, 40, 41, 44–46]. Common PI protocols employ HE/SS for
processing linear operations (e.g., convolutions and fully connected
layers) and garbled circuits for nonlinear operations (e.g., ReLU and
maxpool) [23, 24, 31, 32, 34, 43].

Garbled circuits are a major source of inefficiency when per-
forming PI for the following reasons: (1) in PI, unlike plaintext
inference, ReLU garbled circuits dominate the runtime and can
be orders of magnitude more costly than linear layers computed
with SS [15, 34]; (2) a single ReLU operation using garbled circuits
requires 17.5 KB of data storage and communication, and a single
inference on state-of-the-art DNNs (such as ResNet50 [18]) requires
millions of ReLU computations that leads to hundreds of GiB of
data storage and communication [43]. These inefficiencies exist
for variants of ReLU such as leaky ReLU [33], parametric ReLU

Table 1: Effectiveness of polynomial activations proposed for ciphertext
training/inference on MNIST, CIFAR-10 (C10), CIFAR-100 (C100), and Tiny-
ImageNet (Tiny) datasets. * denotes the full ImageNet dataset.

Method Degree Partial/Full Datasets

MNIST C10 C100 Tiny
CryptoNet [16] 2 Full Y N N N

Lookup Table [52] 2 Full Y N N N
Polyfit [5] 2, 4, 6 Full Y N N N

SecureML [37] 2 Full Y N N N
FCryptoNet [9] 2 Full Y Y N N
CryptoDL [20] 2, 3 Full Y Y N N
HCNN [2] 2 Full Y Y N N

DELPHI [34] 2 Partial Y Y Y N
SAFENet [32] 2, 3 Partial N Y Y N

PreciseApprox [30] 29 Full N Y N Y∗
QuaIL (Ours) 2 Full Y Y Y Y

[17], RReLU [54], CReLU [49], and the recently proposed DY-ReLU
[8]. Furthermore, storage and latency costs of GCs are exacerbated
when used to compute more expressive and complex activation
functions such as ELU [10], SELU [25], Swish [42], GELU [19] and
Mish [35].

The aforementioned challenges and inefficiencies of nonlinear
computations using garbled circuits have driven researchers to de-
sign alternative activation functions that are cheaper to compute
under PI. In particular, polynomial functions, which require only
simple addition and multiplication, eliminate the need for garbled
circuits and have become the de-facto solution for replacing ReLUs
in neural networks. In fact, replacing all ReLUs with 𝑥2 (denoted
Quad here) can reduce online latency and communication dramati-
cally by up to 2843× and 256×, respectively [34].

Table 1 summarizes prior work using polynomial activation
functions for PI. The partial/full distinction indicates whether the
solution replaces some or all ReLU activations with polynomials.
We find that prior work can be classified into three categories: full
replacement using small datasets/models (e.g,. MNIST [29], CIFAR-
10 [27]) [2, 5, 9, 16, 20, 37, 52], partial replacement on mid-sized
models (e.g., CIFAR-100) [32, 34], and full-replacement on large
models using very-high degree approximations [30]. Each of the
solutions significantly advanced our understanding of the problem
and the capabilities of PI. However, none have demonstrated full re-
placement on large datasets/models using low-degree polynomials,
which we believe is the ideal solution.

In this paper, we set out to replace all ReLUs with low-degree
polynomials. Specifically, we test two drop-and-replace solutions
(Taylor Approximation and Polynomial Regression Approximation)
and develop two novel replace-and-retrain strategies (QuaIL and

QuaIL+ApproxMinMax) on a wide range of networks and datasets.
Our contribution can be summarized as follows:

(1) We propose Quadratic Imitation Learning (QuaIL), a train-
ing setup inspired by dynamic programming to gradually
build neural networks with only polynomial activations and
introduce ApproxMinMaxNorm, a normalization strategy
that bounds pre-activation values during training and ap-
proximately bounds pre-activation values during inference.

(2) We implement and release Sisyphus, a set of methods for
wholesale ReLU replacement that range from simple drop-
and-replace solutions to replace-and-retrain strategies.

(3) We develop and rigorously evaluate four substitution strate-
gies using the Sisyphus framework and perform an in-depth
analysis of their efficacy for deep networks. Crucially, we
show that the instabilities of performing both inference and
training with polynomial activation functions become more
prominent in deeper neural networks and may not be ob-
served in shallower networks.

As we increase the complexity of the replacement strategy we
steadily progress towards training deeper, more accurate, PI-friendly
networks using only low-degree polynomial activations. Despite
our best efforts, we fall short of matching baseline ReLU network
performance due to the escaping activation problem: in all solutions,
forward-pass activation values inevitably escape the well-behaving
range of the polynomial activation function, leading to either ex-
ploding values (NaNs) or poor-behaving approximations.

Looking beyond QuaIL+ApproxMinMax (QuaIL+AMM), it may
be tempting to evaluate additional solutions. One way to overcome
the escaping activation problem in QuaIL would be to bound the
range. However, this requires a max function, which if we had,
we could simply use to compute ReLU in our networks. Recent
work proposed the Pade Activation Unit (PAU), a rational function
of two low-degree polynomials that performs well on complex
datasets [38]. Unfortunately, the division operation required by
PAUs is not natively supported by cryptographic primitives of
HE/SS and is known to be a challenge to implement. Another recent
work has proposed approximating ReLU and max-pooling using
very-high (e.g., 29) degree polynomials and reports competitive
accuracy for ImageNet [30]. However, high-degree polynomials
can be difficult to evaluate using cryptographic solutions as they
would introduce significant additional computation in both SS and
HE as well as noise growth in HE. Thus, we name this paper and
our framework Sisyphus, as each time a promising solution was
evaluated we incur a fundamental limitation that brought us back
to square one.

2 METHODOLOGY
We test the Sisyphus framework on the MNIST, CIFAR-10, CIFAR-
100, and TinyImageNet [55] datasets and test each substitution
strategy over a wide variety of networks: AlexNet [28], VGG-11/16
[50], ResNet18, MobileNetV1 [21], and ResNet32 [18]. We develop
and test our framework using PyTorch [39] (1.8.1+CUDA11.1), and
for performing Bayesian Optimization during Polynomial Regres-
sion Approximation, we utilize GPyTorch [13], and BoTorch [3].
All code for this paper is available online1.
1See: https://github.com/kvgarimella/sisyphus-ppml

3 SOLUTIONS AND RESULTS
In this section we present the solutions evaluated for replacing all
ReLUswith polynomial activation functions, including Taylor series
approximation, polynomial regression, QuaIL, and QuaIL+AMM.

3.1 Drop-and-Replace
3.1.1 Taylor Series Approximation.

Key Idea: A simple approach to approximating ReLU as a polyno-
mial is to use the Taylor Approximation. The Taylor approximation
estimates a differentiable function, 𝑓 , as a polynomial centered
around point 𝑎 (we choose 𝑎 = 0). This approximation is con-
structed using high-order derivatives, and in the case of ReLU, all
high-order derivative terms in the Taylor approximation vanish
as the second derivative of ReLU is 0 everywhere, resulting in a
simple approximation: ReLU(𝑥) ≈ 1

2𝑥 .
Setup: First, a baseline ReLU model is trained. We then replace all
ReLUs in the trained networks with the Taylor approximation and
measure the test accuracy for the network’s respective dataset.
Results: As evident in Table 2, the test accuracy deteriorates signif-
icantly for all networks except for the two layer MLP, which sees a
dip in test accuracy from 97.98% (using ReLU) to 86.28% (using the
Taylor approximation) on MNIST. Given that the Taylor approxi-
mation for ReLU is a simple linear function (𝑓 (𝑥) = 1

2𝑥), we expect
deeper networks to perform poorly when using the approximation
as an activation function.
Takeaway: Using the Taylor approximation of ReLU collapses
each network to a linear model, which restricts the network from
representing the non-linear mappings required to achieve a high
predictive performance on deeper networks and complex datasets.

3.1.2 Polynomial Regression Approximation.
Key Idea: A natural extension of the Taylor approximation is to
approximate ReLU using a polynomial over a range rather than
a single point. The polynomial fit to a function 𝑓 has the form
𝑓 (𝑥) = ®𝑤 · ®𝑥 , where ®𝑥 = (1, 𝑥1, 𝑥2, . . . , 𝑥𝐷) and 𝐷 is the order
of the polynomial. Polynomial regression can be employed to fit
a polynomial function to any non-linear function by minimizing
the mean squared error between the approximation and the target
function 𝑓 over a range [−𝑎, 𝑎] and order 𝐷 . For example if the
target function is ReLU, optimal coefficients𝑤0,𝑤1, . . . ,𝑤𝐷 can be
found by minimizing

𝐸 (®𝑤) =
∫ 𝑎

−𝑎

(
𝐷∑
𝑑=0

𝑤𝑑𝑥
𝑑 − ReLU(𝑥)

)2
𝑑𝑥. (1)

Setup: To find ®𝑤 that minimizes Equation 1, we first discretize
the integral using a granularity of 𝑑𝑥 = 1𝑒−3. The polynomial fit
heavily depends upon the order of the polynomial (𝐷) and the range
(𝑎) over which Equation 1 is minimized. To this end, we employ
Bayesian Optimization (BayesOpt) to efficiently select effective
values for 𝐷 and 𝑎 [51]. To accommodate a variety of polynomials,
we choose the range 𝑎 to vary between [0.5, 50] and the order of
the polynomial to vary over integer values between [2, 9].

Given a setting of {𝐷, 𝑎}, a ReLU approximation is found using
polynomial regression. All ReLUs in the original trained network
are then replaced with the approximation and we measure the
training accuracy. BayesOpt uses this accuracy to iteratively update

2

https://github.com/kvgarimella/sisyphus-ppml

Image

1: Conv + ReLU

3: FC

Prediction

2: Conv + ReLU

1: Conv + ReLU

Image

1: Conv + Quad 1: Conv + ReLU

Image

1: Conv + Quad

3: FC

2: Conv + ReLU

3: FC

2: Conv + Quad

Image

1: Conv + Quad

3: FC

Prediction

2: Conv + Quad

Label

Image

1: Conv + Quad

3: FC

Prediction

2: Conv + Quad

Label

TrainingTrained Frozen Loss

Key

1 2 3 4 5

Figure 1: An overview of the QuaIL setup for a simple three-layer network. 1) Train a baseline network with the ReLU activation function. 2) Clone the
first layer of the ReLU network, copy over the trained weights, and replace ReLU with Quad. Minimize the M.S.E. loss between the first-layer intermediate
representations of the two networks and backpropagate through the Quad network. 3) Repeat this process for each subsequent layer (while freezing the
previous layers) until the full baseline network is cloned. 4-5) Fine-tune the Quad network by gradually unfreezing layers and training with standard C.E. Loss.

its probabilistic model and find well performing values of 𝑎 and
𝐷 . We run BayesOpt for 50 iterations (10 random values to seed
the probabilistic model and 40 optimized values) for each network
and dataset. Finally, we replace all ReLUs in each network with the
most accurate polynomial fit and measure the test accuracy.
Result: Table 2 displays the test accuracy for evaluating each
network using the polynomial activation function produced by
BayesOpt. Evaluating networks using non-linear polynomials intro-
duces unbounded forward activations that compound exponentially
with network depth, which we call escaping activations. Especially
for deeper networks, it is possible to generate forward activation
values that overflow their floating point representations, which
results in a NaN. We consider output logits that contain NaN val-
ues to be incorrect predictions. For this reason, two accuracies are
presented in some rows of the polynomial regression experiments.
Accuracies in parenthesis represent the test accuracy when only
considering inputs that do not overflow in forward activation val-
ues. Using polynomial regression, we are able to progress to a high
accuracy on LeNet, a five-layer network.
Takeaway: Simply replacing all ReLUs with accurate polynomial
approximations that are both low-degree and non-linear fails to
work for most deeper networks due to the escaping activation prob-
lem in which forward activation values grow exponentially, leading
to instability in inference.

3.2 Replace-and-Retrain
3.2.1 Quadratic Imitation Learning (QuaIL).

Key Idea: The escaping activation problem encountered when
using the polynomial regression strategy was directly caused by
the compounding use of polynomials in deeper networks. Specifi-
cally, after each pass through the polynomial activation, the output
intermediate representation values began to grow exponentially.
Following several layers (several passes through the polynomial
activations), the intermediate representation values escaped the
well-behaving regions of the polynomials and resulted in exploding
values (NaNs). The escaping nature of intermediate representa-
tions suggests to elevate from simple drop-and-replace strategies
to replace-and-retrain strategies which mitigate the escaping ac-
tivation problem. Rather than attempting to train a network with
polynomial activations end-to-end by minimizing the loss between

ground truth and predictions, Quadratic Imitation Learning (QuaIL)
iteratively builds and trains a neural network with polynomial ac-
tivations by mimicking the intermediate representation values of
a trained ReLU network. Similar to dynamic programming, QuaIL
attempts to first solve a sub-problem by mimicking intermediate
representation values of a well-behaving network before adding ad-
ditional layers to a network using polynomial activations. In QuaIL,
the polynomial activation function is set to 𝑓 (𝑥) = 𝑥2 (Quad).
Setup: Figure 1 depicts the QuaIL training process. First, a ReLU
baseline network is trained using standard supervised learning
techniques (Fig. 1.1). Then, the first layer of the ReLU network is
duplicated and the layer’s ReLUs are replaced with Quad. Here,
the Quad network is trained by minimizing the Mean Square Er-
ror (M.S.E.) between the first-layer intermediate representations of
both networks (Fig. 1.2). In this way, the single-layer Quad network
learns to predict similar first-layer representations as the ReLU
network. After training converges to a low M.S.E. between the
two intermediate representations, the Quad network’s first-layer
weights are frozen and the second layer of the ReLU network is
cloned and stacked onto the Quad network. Again, ReLU is replaced
by Quad for the second layer. Similar to the first layer, the Quad
network now minimizes the M.S.E. between the second-layer repre-
sentations of both networks. This process is repeated until the final
layer of the ReLU network has been added to the Quad network and
the error between the final representations is minimized (Fig. 1.3).

At this stage, the Quad network is trained using standard super-
vising learning while gradually unfreezing shallower layers. In the
image classification setting, the Cross Entropy (C.E.) loss is mini-
mized between ground truth labels and predictions (Fig. 1.4- 1.5).
Result: QuaIL further extends our progress of building deep, PI-
friendly networks to AlexNet and VGG11 on the CIFAR-10, CIFAR-
100, and TinyImageNet datasets. Each of these networks that only
uses the Quad activation function are built up iteratively to limit the
effect of escaping activations. However, QuaIL fails to generalize to
even deeper networks as even a small difference in the intermediate
representations at earlier stages of the deeper networks propagate
forward leading to escaping activations and causing training to
diverge (denoted as — in Table 2).
Takeaway: QuaIL allows us to iteratively build deep (up to 11-
layer) networks with only the Quad activation function but fails to

3

Table 2: Accuracy when all ReLUs in the networks are substituted with
Taylor series approximation (T-Approx.), polynomial regression approxima-
tion (Poly-Reg.), QuaIL, and QuaIL+AMM on CIFAR-10/100 (C-10/100) and
TinyImageNet (Tiny) datasets.

Dataset-Net Baseline T-Approx. Poly-Reg. Quail Quail+AMM
MNIST-MLP 97.98 86.28 97.88 98.20 98.17
MNIST-LeNet 99.32 9.81 99.14 99.45 99.26

C10-AlexNet 85.47 12.90 1.28 (71.11) 79.94 79.32
C10-VGG11 90.46 13.68 8.49 (82.83) 82.19 82.85
C10-VGG16 92.78 16.01 13.31 (87.57) — 82.25 (82.63)
C10-ResNet18 93.21 1.00 13.64 — 83.61 (85.72)
C10-MobileNetV1 91.70 11.04 11.13 10.00 48.03 (49.45)
C10-ResNet32 91.72 26.96 90.48 (90.62) — 56.93 (71.81)

C100-AlexNet 60.98 1.73 21.51 (31.8) 54.83 50.76
C100-VGG11 68.36 1.88 3.74 52.08 55.53
C100-VGG16 71.44 1.74 0.94 (52.81) — 54.56 (55.03)
C100-ResNet18 74.39 1.00 1.00 — 65.17 (66.30)
C100-MobileNetV1 65.00 1.00 25.8 — 0.92 (01.09)
C100-ResNet32 67.83 4.28 66.31 — 19.86 (28.58)

Tiny-AlexNet 51.65 0.51 1.70 (8.98) 38.95 36.24
Tiny-VGG11 55.36 0.66 0.5 37.59 44.63 (44.68)
Tiny-VGG16 58.88 0.45 00.56 (3.07) — 45.76 (46.47)
Tiny-ResNet18 61.59 0.50 0.5 — 49.45 (53.82)
Tiny-MobileNetV1 56.16 0.76 0.46 — 13.43 (22.75)
Tiny-ResNet32 54.77 2.04 47.55 — 7.16 (10.60)

mitigate unstable intermediate representations for even deeper net-
works and thus still suffers from escaping activations. For example,
a ResNet-18 network trained using the QuaIL setup experiences ex-
ploding gradients due to escaping activations in latter intermediate
representations and is unable to converge during training.

3.2.2 Approximate MinMax Normalization.
Key Idea: The escaping activation problem encountered during
QuaIL illustrates the need to bound pre-activation values to train
networks using low-degree polynomial activation functions, es-
pecially for deeper neural networks. To do this we developed Ap-
proximate Min-Max Normalization (ApproxMinMaxNorm), which
places upper and lower constraints on pre-activation values during
training by performing a dimension-wise Min-Max normalization:

𝑥 = 𝛼
𝑥 −min𝑥

max𝑥 −min𝑥
− 𝛽 (2)

where 𝛼 and 𝛽 are scaling parameters. During the training phase,
approximations of minimums and maximums are calculated and
stored using a weighted moving average of the true minimums and
maximums (we use a smoothing factor of 1/10). When performing
inference, these stored approximations are then used to perform
approximate normalization.
Setup: ApproxMinMaxNorm is combined with the QuaIL training
procedure; when building the Quad network, ReLU is replaced by
an ApproxMinMaxNorm layer immediately followed by Quad.
Result: We observe stable training for all networks and datasets
using QuaIL+AMM. However, at inference time, when using the
approximated values of the minimums and maximums for each
layer, we again detect the escaping activation problem, albeit to a
less degree when compared to the drop-and-replace polynomial
regression strategy.
Takeaway: ApproxMinMaxNorm prevents the escaping activation
problem at training time by explicitly bounding the pre-activation
values to polynomial activations. However, the escaping activation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Layer

103

108

1013

1018

1023

1028

1033

M
ax

 V
al

ue

QuaIL+AMM
QuaIL+MM
Baseline ReLU

Figure 2: Comparison of maximum forward activation values after each
nonlinear layer at inference time using Quail+AMM (ApproxMinMax),
Quail+MM (TrueMinMax), and an all-ReLU baseline ResNet-18.

problem returns during inference due to approximate minimum and
maximum calculations. Thus a true maximum function is required
at test time to guarantee bounds on pre-activation values.

4 DISCUSSION
The desirable properties of PI-friendly ReLU substitutions are: low
multiplicative depth, stability over a sufficiently large range of ac-
tivation values, and competitive performance when compared to
networks with ReLUs. The Quad activation function has been con-
sidered a promising solution as its multiplicative depth is one and
exhibits stability for simple models and datasets, e.g., MNIST [16].
However, for deeper networks and larger datasets, the desired sta-
bility range of pre-activation values increases significantly [30] and
using Quad in this extended range results in imprecise approxima-
tions of ReLU and poor accuracy [5]. Consequently, higher-degree
polynomials are used for more accurate approximation, but suffer
from a higher multiplicative depth that results in additional compu-
tation (in SS/HE) and noise growth (HE), thus limiting their efficacy
in practical settings.

To help mitigate these issues, we devised QuaIL where each layer
in the Quad-network learns to mimic intermediate representations
of a trained, all-ReLU network. QuaIL worked well for AlexNet and
VGG11, which polynomial regression under-performed; however,
it did not scale to even deeper networks. To understand why, we
dug deeper and found the issue still to be escaping activations. That
is, some intermediate representation values still began to grow
unbounded. To mitigate escaping activations at training time, we
bounded the pre-activation values inputs using an ApproxMinMax
normalization strategy, which achieved reasonable accuracies for all
the networks except MobileNetV1 and ResNet32. However since the
maximum and minimum values were approximated at inference
time, the approximation error grew in deeper layers and some
activations began to explode (shown in Figure 2 as Quail+AMM).
For a better understanding, we replaced the approximated min
and max with the true min and max during inference (termed
as QuaIL+MM in Figure 2) and observed that the intermediate
representation values were now similar to that of the all-ReLU
baseline networks.

Fundamentally, the efficacy of using low-degree polynomials
for deeper networks on complex datasets boils down to bounding
input values to the the polynomial activations in order to mitigate
escaping activations, which requires using exact calculations of both
theminimum andmaximum. However, the issue of calculating exact
minimums and maximums brings us back full circle to the problem
we were trying to solve: remove all ReLUs (which is defined using

4

maximum) to prevent the usage of garbled circuits in PI. We hope
the insights gained from Sisyphus aid the PPML community in
being mindful when using low-degree polynomial activations in
PI-friendly networks.

ACKNOWLEDGEMENTS
This work was supported in part by the Applications Driving Ar-
chitectures (ADA) Research Center, a JUMP Center co-sponsored
by SRC and DARPA. This research was also developed with funding
from theDefenseAdvanced Research Projects Agency (DARPA),under
the Data Protection in Virtual Environments (DPRIVE) program,
contract HR0011-21-9-0003. The views, opinions and/or findings
expressed are those of the author and should not be interpreted
as representing the official views or policies of the Department of
Defense or the U.S. Government.

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun, Jun Jie Sim, Benjamin
Hong Meng Tan, Xiao Nan, Khin Mi Mi Aung, and Vijay Ramaseshan Chan-
drasekhar. 2020. Towards the AlexNet Moment for Homomorphic Encryption:
HCNN, theFirst Homomorphic CNN on Encrypted Data with GPUs. IEEE Trans-
actions on Emerging Topics in Computing (2020).

[3] Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin
Letham, Andrew Gordon Wilson, and Eytan Bakshy. 2020. BoTorch: A Frame-
work for Efficient Monte-Carlo Bayesian Optimization. In Advances in Neural
Information Processing Systems 33.

[4] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,
H Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. arXiv preprint arXiv:1902.01046 (2019).

[5] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. 2017. Privacy-Preserving Classification on Deep Neural
Network. IACR Cryptol. ePrint Arch. 2017 (2017), 35.

[6] Nishanth Chandran, Divya Gupta, Aseem Rastogi, Rahul Sharma, and Shardul
Tripathi. 2019. EzPC: programmable and efficient secure two-party computation
for machine learning. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P). IEEE, 496–511.

[7] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-
TRA: high throughput 3pc over rings with application to secure prediction. In
Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing Security
Workshop. 81–92.

[8] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and
Zicheng Liu. 2020. Dynamic relu. In European Conference on Computer Vision.
Springer, 351–367.

[9] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei.
2018. Faster cryptonets: Leveraging sparsity for real-world encrypted inference.
arXiv preprint arXiv:1811.09953 (2018).

[10] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[11] Victor Costan and Srinivas Devadas. 2016. Intel sgx explained. IACR Cryptol.
ePrint Arch. 2016, 86 (2016), 1–118.

[12] Cynthia Dwork. 2006. Differential privacy. In International Colloquium on Au-
tomata, Languages, and Programming. Springer, 1–12.

[13] Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and An-
drew Gordon Wilson. 2018. Gpytorch: Blackbox matrix-matrix gaussian process
inference with gpu acceleration. arXiv preprint arXiv:1809.11165 (2018).

[14] Craig Gentry et al. 2009. A fully homomorphic encryption scheme. Stanford
university.

[15] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen, and Siddharth Garg.
2020. CryptoNAS: Private Inference on a ReLU Budget. In Advances in Neural
Information Processing Systems, Vol. 33. 16961–16971.

[16] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy. In International Conference on Machine
Learning. 201–210.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision. 1026–1034.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[19] Dan Hendrycks and Kevin Gimpel. 2016. Gaussian error linear units (gelus).
arXiv preprint arXiv:1606.08415 (2016).

[20] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. Cryptodl: Deep
neural networks over encrypted data. arXiv preprint arXiv:1711.05189 (2017).

[21] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[22] Tyler Hunt, Congzheng Song, Reza Shokri, Vitaly Shmatikov, and Emmett
Witchel. 2018. Chiron: Privacy-preserving machine learning as a service. arXiv
preprint arXiv:1803.05961 (2018).

[23] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and Brandon Reagen. 2021.
DeepReDuce: ReLU Reduction for Fast Private Inference. In International Confer-
ence on Machine Learning.

[24] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference. In
27th USENIX Security Symposium (USENIX Security 18). 1651–1669.

[25] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
2017. Self-normalizing neural networks. In Proceedings of the 31st international
conference on neural information processing systems. 972–981.

[26] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492 (2016).

[27] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2010. Cifar-10 (canadian
institute for advanced research). URL http://www. cs. toronto. edu/kriz/cifar. html
5 (2010).

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097–1105.

[29] Yann LeCun, Corinna Cortes, and CJ Burges. 2010. MNIST handwritten digit
database. ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[30] Junghyun Lee, Eunsang Lee, Joon-Woo Lee, Yongjune Kim, Young-Sik Kim, and
Jong-Seon No. 2021. Precise Approximation of Convolutional NeuralNetworks
for Homomorphically Encrypted Data. arXiv preprint arXiv:2105.10879 (2021).

[31] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. 2017. Oblivious neural network
predictions via minionn transformations. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. 619–631.

[32] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. 2021. SAFENet: ASecure, ACCU-
RATE AND FAST NEU-RAL NETWORK INFERENCE. International Conference
on Learning Representations (2021).

[33] Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. 2013. Rectifier nonlin-
earities improve neural network acoustic models. In International Conference on
Machine Learning.

[34] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. DELPHI: A Cryptographic Inference Service for Neural
Networks. In 29th USENIX Security Symposium (USENIX Security 20).

[35] Diganta Misra. 2019. Mish: A self regularized non-monotonic neural activation
function. arXiv preprint arXiv:1908.08681 4 (2019), 2.

[36] Payman Mohassel and Peter Rindal. 2018. ABY3: A mixed protocol framework
for machine learning. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 35–52.

[37] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A system for scalable
privacy-preserving machine learning. In 2017 IEEE Symposium on Security and
Privacy (SP). 19–38.

[38] Alejandro Molina, Patrick Schramowski, and Kristian Kersting. 2020. Padé Ac-
tivation Units: End-to-end Learning of Flexible Activation Functions in Deep
Networks. In International Conference on Learning Representations.

[39] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[40] Arpita Patra and Ajith Suresh. 2020. BLAZE: blazing fast privacy-preserving
machine learning. arXiv preprint arXiv:2005.09042 (2020).

[41] Rahul Rachuri and Ajith Suresh. 2019. Trident: Efficient 4pc framework for
privacy preserving machine learning. arXiv preprint arXiv:1912.02631 (2019).

[42] Prajit Ramachandran, Barret Zoph, and Quoc V Le. 2017. Searching for activation
functions. arXiv preprint arXiv:1710.05941 (2017).

[43] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 325–342.

5

[44] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin Lauter, and
Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural Network
Inference. In 28th USENIX Security Symposium (USENIX Security 19). 1501–1518.

[45] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A hybrid secure
computation framework for machine learning applications. In Proceedings of
the 2018 on Asia Conference on Computer and Communications Security. ACM,
707–721.

[46] Bita Darvish Rouhani, M Sadegh Riazi, and Farinaz Koushanfar. 2018. Deepsecure:
Scalable provably-secure deep learning. In Proceedings of the 55th Annual Design
Automation Conference. 2.

[47] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun Kanade. 2018. TAPAS:
Tricks to accelerate (encrypted) prediction as a service. In International Conference
on Machine Learning. PMLR, 4490–4499.

[48] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.
[49] Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. 2016. Under-

standing and improving convolutional neural networks via concatenated rectified
linear units. In international conference on machine learning. PMLR, 2217–2225.

[50] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[51] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. 2012. Practical Bayesian
Optimization of Machine Learning Algorithms. (2012), 2951–2959.

[52] Patricia Thaine, Sergey Gorbunov, and Gerald Penn. 2019. Efficient evaluation
of activation functions over encrypted data. In 2019 IEEE Security and Privacy
Workshops (SPW). IEEE, 57–63.

[53] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and private exe-
cution of neural networks in trusted hardware. arXiv preprint arXiv:1806.03287
(2018).

[54] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. 2015. Empirical evaluation of
rectified activations in convolutional network. arXiv preprint arXiv:1505.00853
(2015).

[55] Leon Yao and John Miller. 2015. Tiny imagenet classification with convolutional
neural networks. CS 231N 2, 5 (2015), 8.

6

	Abstract
	1 Introduction
	2 Methodology
	3 Solutions and Results
	3.1 Drop-and-Replace
	3.2 Replace-and-Retrain

	4 Discussion
	References

