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ABSTRACT
Individual Treatment Effect (ITE) estimation has become one of

the main trends in Causal Inference due to its applications in vari-

ous areas where personalization is key. In order to circumvent the

complex problem of causal identification, the randomized control

trial (RCT) set-up is used in several domains which refer to ITE

estimation as uplift modeling. If practitioners used to have full ac-

cess to the user-level data in order to learn uplift models, the rise of

privacy concerns in different domains such as healthcare or online

advertising motivates to explore how such models could be trained

to reach significant performances while ensuring relevant privacy

guarantees. We present 𝜖-ADUM, an 𝜖-differentially private method

to learn uplift models from data aggregated according to a given

partition of the feature space. After adapting the bias-variance de-

composition to the Precision in Estimation of Heterogeneous Effects

(PEHE) metric, we propose an upper bound of the performance of

𝜖-ADUM under a set of illustrative assumptions, which explicits

the privacy-utility trade-off for this class of models and provides

insights on how the size of the underlying partition can be adapted

to match the privacy constraints. Finally, we provide experiments

on both synthetic and real data highlighting that 𝜖-ADUM outper-

forms 𝜖-differentially private models with access to individual data

for strong privacy guarantees (𝜖 ≤ 5).
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1 INTRODUCTION
1.1 Motivations
Estimating the causal effect of an action at the individual level − or

Individual Treatment Effect (ITE) − is a problem of growing interest

in the machine learning community, particularly for healthcare [1],

online advertising [2] or socio-economic [3] applications.
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Many of these applications imply to handle sensitive data for

which there are rising privacy concerns. Consequently, many in-

dustries are starting to enforce procedures ensuring individual data

protection. In the online advertising sector for example, a series of

changes to data access were proposed recently by Google Chrome

[4] in order to guarantee web users privacy through data aggrega-

tion and differential privacy.

In consequence, the scientific community has grown a strong

interest in proposing ITE prediction methods which fully leverage

the trade-off between privacy and utility.

1.2 Related Work
1.2.1 ITE, CATE & uplift modeling. Individual treatment effect

(ITE) [5] may be formally defined using the potential outcomes
framework [6], in which each individual 𝑖 has two potential out-

comes 𝑌𝑖 (1) (if 𝑖 receives the treatment) and 𝑌𝑖 (0) (if 𝑖 does not
receive the treatment). The ITE of individual 𝑖 is then given by the

difference 𝑌𝑖 (1) −𝑌𝑖 (0). In practice, individuals are often described

by a set of features (contained in a variable 𝑋 ), and one rather aims

at estimating the conditional average treatment effect (CATE) [5],
defined, for an individual 𝑖 with features 𝑋 = 𝑥𝑖 , as:

𝜏 (𝑥𝑖 ) = E[𝑌𝑖 (1) − 𝑌𝑖 (0) |𝑋 = 𝑥𝑖 ] . (1)

A practical-oriented branch of the work on CATE estimation −
calledUplift Modeling (UM) [7]− focuses on the Randomized Control
Trial (RCT) setting, in which individuals are randomly split into a

treatment group and a control group. This set-up circumvents the

causal identification problem (avoiding selection bias) and ensures

the CATE (or uplift) is rightfully given by the difference between

the following conditional expectations:

𝑢 (𝑥𝑖 ) = E[𝑌 |𝑋 = 𝑥𝑖 ,𝑇 = 1] − E[𝑌 |𝑋 = 𝑥𝑖 ,𝑇 = 0] . (2)

Privately learning the function defined in (2) is the main focus of

our work.

1.2.2 Metrics. In order to evaluate CATE estimators, one may

use an adapted version of theMean-Squared Error (MSE), namely the

Precision in Estimation of Heterogeneous Effects (PEHE) [8], which
is defined for a model 𝜏 as:

𝜖𝑃𝐸𝐻𝐸 (𝜏) = E
[(
𝜏 (𝑋 ) − 𝜏 (𝑋 )

)
2

]
, (3)

where the expectancy is taken with respect to the distributions of

both 𝑋 and the data from with the model 𝜏 is learned.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In practice however, only one of the two potential outcomes is

observable for a given individual (the factual outcome). This is

known as the Fundamental Problem of Causal Inference (FPCI), and
prevents the computation of the PEHE in real settings. A possible

solution is to use a ranking-based metric such as the uplift curve

[9], which evaluates a sorting of the individuals according to their

predicted uplift score. In that vein, the Area Under the Uplift Curve
(AUUC) [10] represents the most popular metric in the community.

1.2.3 Learning from aggregated data. Learning individual-level

behavior from aggregated-level data has long been known as the

ecological inference problem. Plenty of presented aggregated-level

methods [11] attempt to tackle the problem of ecological fallacy:

when the inferences drawn from aggregate level drastically differs

from the ground truth at the individual level.

The most relevant level of aggregation has not yet been com-

pletely determined by the research community as the term "ag-

gregated data" has been referring to different frameworks: label

similarities with complete access to features [12], aggregated labels

with complete access to features [13] or aggregated labels with

aggregated features [14]. In this work, both features and labels are

considered as sensitive and therefore need to be aggregated, which

corresponds to the most restrictive setting.

However, regardless of the selected level of aggregation, most of

these methods do not ensure theoretical privacy guarantees without

being combined with differential privacy.

1.2.4 Differential Privacy. Differential privacy [15] represents

one of the most widely used data protection method in so far as it

enables researchers to precisely quantify privacy guarantees while

being applicable to general setups. Differential privacy should be

considered as a process-oriented method, which allows the private

training of models.

In order to learn in a differentially private framework, the most

common techniques include result perturbation, objective pertur-

bation [16] or noisy iterative optimization methods which can be

performed thanks to a precise budget tracking. In particular, differ-

entially private stochastic methods adding scaled noises for each

training batch have already shown great performances when ap-

plied to deep learning models [17, 18].

Themodel we propose enables a one-shot spending of the privacy

budget, avoiding both its complex tracking and adaptive spending.

1.3 Our contributions
(1) We introduce 𝜖-Aggregated Data Uplift Model (𝜖-ADUM),

a differentially private method to learn uplift models from

data aggregated along a given partition of the feature space.

(2) We identify and illustrate a bias-variance decomposition for

𝜖-ADUM, highlighting the role of the underlying partition

size in the privacy-utility trade-off.

(3) Finally we show empirically on both synthetic and real data

that, for strong privacy guarantees (𝜖 ≤ 5), 𝜖-ADUM out-

performs comparable 𝜖-differentially private models with

access to individual data.

2 ADUM AND ITS BIAS-VARIANCE
TRADE-OFF

2.1 Preliminaries
2.1.1 Variables and data. We consider random variables 𝑋 (fea-

tures),𝑇 (treatment) and𝑌 (outcome) with respective values inK (a

compact convex subset ofR𝑑 ), {0, 1} andR. We additionally suppose

there exists treatment/control response functions 𝑓 𝑇 , 𝑓𝐶 : K → R
and a real random variable b (independent of 𝑋 ) with E[b] = 0 and

E[b2] = 𝜎2, such that

𝑌 = 𝑇 𝑓 𝑇 (𝑋 ) + (1 −𝑇 ) 𝑓𝐶 (𝑋 ) + b . (4)

Under these notations, and for any𝑥 , we have that 𝑓𝐶 (𝑥) = E[𝑌 |𝑇 =

0, 𝑋 = 𝑥], 𝑓 𝑇 (𝑥) = E[𝑌 |𝑇 = 1, 𝑋 = 𝑥] and the corresponding uplift

is defined as:

𝑢 (𝑥) = 𝑓 𝑇 (𝑥) − 𝑓𝐶 (𝑥). (5)

Finally, we assume we have access to D = {(𝑥𝑖 , 𝑡𝑖 , 𝑦𝑖 )}1≤𝑖≤𝑛 , a
dataset containing 𝑛 i.i.d. realizations of (𝑋,𝑇 ,𝑌 ). Since we are in
a randomized controlled trial (RCT) setting, the binary treatment

variable 𝑇 is assumed independent of 𝑋 . We denote T and C the

subsets of D which contain respectively all datapoints from the

treatment (𝑇 = 1) and control (𝑇 = 0) groups.

2.1.2 Space partitioning. For a fixed positive integer 𝑝 we define

Π𝑝 (K) :=
{
𝜋 ∈ {1, . . . , 𝑝}K : 𝜋 surjective

}
, the set of all possible

partitions of K containing 𝑝 elements. Let 𝜋 ∈ Π𝑝 (K) be a fixed
partition, then there exists 𝐺

(1)
𝜋 , . . . ,𝐺

(𝑝)
𝜋 disjoint subsets of K

such that

⋃
1≤ 𝑗≤𝑝

𝐺
( 𝑗)
𝜋 = K . For a given 𝑥 ∈ K , we denote 𝐺𝜋 (𝑥) =

𝜋−1 ({𝜋 (𝑥)}), the component of 𝜋 which contains 𝑥 . For any𝐺 ⊂ K
we denote |𝐺 |D =

∑
𝑖∈D
I𝑥𝑖 ∈𝐺 , i.e. the number of points of D for

which the feature vector 𝑥𝑖 belongs to 𝐺 .

2.2 ADUM presentation
We now present Aggregated Data Uplift Models (ADUM). For a

given partition 𝜋 ∈ Π𝑝 (K), we estimate the uplift of 𝑥 ∈ K by the

average treatment effect in the group 𝐺𝜋 (𝑥). More formally, we

define 𝑢 : K → R the function which to all 𝑥 ∈ K assigns:

𝑢𝜋 (𝑥) = ˆ𝑓 𝑇𝜋 (𝑥) − ˆ𝑓𝐶𝜋 (𝑥), (6)

where
ˆ𝑓 𝑇𝜋 and

ˆ𝑓𝐶𝜋 refer respectively to aggregated-data based

models of the treatment and control response functions, i.e.:

ˆ𝑓 𝑇𝜋 (𝑥) = 1

|𝐺𝜋 (𝑥) |𝑇
∑

𝑖:𝑥𝑖 ∈𝐺𝜋 (𝑥)
𝑦𝑖𝑡𝑖 ,

ˆ𝑓𝐶𝜋 (𝑥) = 1

|𝐺𝜋 (𝑥) |𝐶
∑

𝑖:𝑥𝑖 ∈𝐺𝜋 (𝑥)
𝑦𝑖 (1 − 𝑡𝑖 ).

ˆ𝑓 𝑇𝜋 and
ˆ𝑓𝐶𝜋 are piecewise constant functions defined using only

aggregated information and would therefore be computable from

an aggregate reporting API [19] thanks to SUM and COUNT queries.

By using aggregated data models for both the treatment and

control positive outcome functions, we partially circumvent the

FPCI: as long as there are points from both the treatment and control

groups in any given component 𝐺𝜋 (𝑥) of 𝜋 , the average treatment

effect in 𝐺𝜋 (𝑥) is consistently estimated by 𝑢 (𝑥).
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Remark. Besides, outside of the RCT setting, additionally assum-

ing {𝜋 (𝑋 )} is a valid adjustment set [20] for (𝑇,𝑌 ) — e.g. in the

case where𝑋 |= 𝑇 |𝜋 (𝑋 ) which is a strictly weaker assumption than

the RCT setting — guarantees ADUM rightfully models the causal

effect of 𝑇 on 𝑌 . Nevertheless, finding such a partition represents a

non-trivial task which is not the subject of this article.

2.2.1 General PEHE bound for ADUM. Let ˆ𝑓𝜋 : K → R be a

model for a given 𝑓 : K → R. For all 𝑥 ∈ K we define:

Bias( ˆ𝑓𝜋 (𝑥)) = 𝑓 (𝑥) − ED [ ˆ𝑓𝜋 (𝑥)],

Var( ˆ𝑓𝜋 (𝑥)) = ED
[(

ˆ𝑓𝜋 (𝑥) − ED [ ˆ𝑓𝜋 (𝑥)]
)
2

]
.

The (squared) bias term captures how well can 𝑓 be approached by

a piecewise constant function on 𝜋 : it should typically decrease
when |𝜋 | = 𝑝 increases. The variance term captures how close

ˆ𝑓𝜋
is to its average in each of the components of 𝜋 : it should typically

increase when |𝜋 | = 𝑝 increases.

Proposition 1. Let 𝜋 ∈ Π𝑝 (K) and 𝑢𝜋 the associated ADUM
learned wrt data D = T ⊔ C, then the PEHE of 𝑢𝜋 satisfies:

𝜖𝑃𝐸𝐻𝐸 (𝑢𝜋 ) ≤ 2E
[
Bias

2

(
ˆ𝑓 C𝜋

)
+ Bias

2

(
ˆ𝑓 T𝜋

)]
+ 2E

[
Var

(
ˆ𝑓 C𝜋

)
+ Var

(
ˆ𝑓 T𝜋

)]
2.3 𝜖-ADUM : definition and algorithm
In order to get theoretical privacy guarantees, ADUM must be

combined with differential privacy. Since ADUM is based on the

computation of means, it can be decomposed into a set of SUM
and COUNT queries. Knowing the range of the outcome 𝐷𝑦 , the

sensitivities of these queries are directly available.

As the partition 𝜋 creates disjoint subsets of the input domain,

the privacy budget 𝜖 can be entirely spent on each group queries in

parallel [21]. Here, we choose to assign an
𝜖
2
budget to each SUM or

COUNT query. Therefore, all the queries can be noised thanks to a

scaled Laplace noise, turning ADUM into an 𝜖-differentially private

model: 𝜖-ADUM (see Algorithm 1).

Algorithm 1 𝜖-ADUM

1: function train((𝑥𝑖 , 𝑡𝑖 , 𝑦𝑖 )𝑖∈[1,𝑛] , 𝜋 ∈ Π𝑝 (K), 𝐷𝑦 > 0, 𝜖 > 0):

2: for 𝑘 ∈ [1, 𝑝] do
3: for 𝑡 ∈ {0, 1} do
4: 𝐸𝑘,𝑡 = (𝑦𝑖 | 𝜋 (𝑥𝑖 ) = 𝑘, 𝑡𝑖 = 𝑡)
5: 𝐶𝑘,𝑡 = COUNT(𝐸𝑘,𝑡 ) + Lap( 2𝜖 ) ⊲ 𝜖

2
-DP count

6: 𝑆𝑘,𝑡 = SUM(𝐸𝑘,𝑡 ) + Lap(2𝐷𝑦

𝜖 ) ⊲ 𝜖
2
-DP sum

7: 𝑦𝑘,𝑡 =
𝑆𝑘,𝑡
𝐶𝑘,𝑡

⊲ 𝜖-DP mean

8: end for
9: 𝑢𝑘 = 𝑦𝑘,1 − 𝑦𝑘,0 ⊲ 𝜖-DP piecewise constant model

10: end for
11: return (𝑢𝑘 )𝑘∈[1,𝑝 ]
12: end function
13:

14: function predict(𝑥𝑛𝑒𝑤 ∈ K):

return 𝑢𝜋 (𝑥𝑛𝑒𝑤 ) ⊲ Assign value linked to 𝐺𝜋 (𝑥𝑛𝑒𝑤)
15: end function

2.4 The bias-variance trade-off for 𝜖−ADUM:
insights from an illustrative setting

2.4.1 Simplified setting. For the sake of the result we present in
the next subsection, we consider the following illustrative setting:

let 𝜋 be a partition ofK , with |𝜋 | = 𝑝 components and assume that

𝑓 𝑇 and 𝑓𝐶 are respectively 𝐿𝑇 and 𝐿𝐶 Lipschitz on K that we sup-

pose uni-dimensional (𝑑 = 1) of diameter 𝐷𝑥 . Moreover, we denote

𝛽𝜋 = max

𝐺,𝐺′∈𝜋
{diam(𝐺)/diam(𝐺 ′)}, and make the assumptions that

every group𝐺 ∈ 𝜋 is equally populated with respect to T and C,
i.e. ∀𝐺 ∈ 𝜋 , |𝐺 |T = |𝐺 |C

2.4.2 PEHE bounding for 𝜖−ADUM.

Corollary 1. For a given Δ ∈ (0, 1), let 𝑝, 𝑛 ∈ N, D a dataset of
size 𝑛, 𝜋 ∈ Π𝑝 (K) and 𝜖 ≥ 8𝑝 log(1/Δ)

𝑛 . Let 𝑢𝜋 be the corresponding
𝜖−ADUM (defined in Algorithm 1), then the following inequality
holds with probability ≥ 1 − Δ:

𝜖𝑃𝐸𝐻𝐸 (𝑢𝜋 ) ≤ 2(𝐿2𝐶 + 𝐿2𝑇 )𝐷
2

𝑥 𝛽
2

𝜋p
−2 ADUM Bias

+ 4

(
2𝜎2 + (𝐿2𝐶 + 𝐿2𝑇 )𝐷

2

𝑥

) p
n

ADUM Variance

+ (24𝐷𝑦)2
p2

n2𝜖2
𝜖−DP term. (7)

When making 𝜖−differentially private queries, it is typical to

constrain 𝜖 to be significantly bigger than the inverse of the popu-

lation of the group upon which the query is made [22], which is

consistent with the condition on 𝜖 stated in the Corollary 1. For

instance, if 𝑛 = 2 · 104, 𝑝 ≤ 20 and Δ = 0.01, the bound holds with

probability 99% for any 𝜖 ≥ 0.04.

The number of groups 𝑝𝑜𝑝𝑡 that minimizes the upper bound in

(7) has the following asymptotic variations with respect to 𝜖 and 𝑛:

• when 𝜖 is small compared to

√
𝑝/𝑛, (7) is dominated by its

first and last terms and 𝑝𝑜𝑝𝑡 = Θ(𝑛𝜖),
• when 𝜖 is large compared to

√
𝑝/𝑛, (7) is dominated by its

two first terms and 𝑝𝑜𝑝𝑡 = Θ(𝑛1/3) does not depend on 𝜖 .

This shows the flexibility of the class of ADUM models, which

robustly adapt to noise addition when the size of the underlying

partition is rightfully tuned.

3 EXPERIMENTS AND RESULTS
3.1 Synthetic data

3.1.1 Data generation. First, 𝜖-ADUM is tested in a synthetic

framework in order to observe its performance in terms of PEHE.

Each of the 𝑛 generated individuals are attributed a covariate 𝑋 ∼
U(−1, 1) (𝑑 = 1) and a treatment 𝑇 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (0.5). The treat-
ment effect surface is defined by the difference between response

surfaces of treatment and control populations. Each individual

couple of potential outcomes is generated following 𝑓𝐶 (𝑋 ) = 0,

𝑓 𝑇 (𝑋 ) = sin𝑋 and b ∼ N(0, 𝜎) in order to observe a simple but

non-monotonic and noisy treatment effect surface. Moreover, 𝜖-

ADUM is computed on a regular cut ofK in order to have balanced

groups (as 𝑋 ∼ U(−1, 1)) and be consistent with Corollary 1.

3.1.2 Performance comparison. Here, 𝜖-ADUM is comparedwith

a Two-Model (TM) [23] uplift modeling method, formed by two
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Figure 1: Comparison of test 𝑃𝐸𝐻𝐸 (lower is better) for 𝜖-TM
and 𝜖-ADUMover 20 random train/test splits selecting 20000
points. Arrows represent standard deviations and the tuned
number of groups for 𝜖-ADUM is annotated in blue. For this
experiment, 𝜎 = 1.

𝜖-differentially private linear regressions [24] with polynomial fea-

tures which have access to individual data, denoted 𝜖-TM. For each

𝜖 , we respectively tune the polynomial degree and the number of

groups for 𝜖-TM and 𝜖-ADUM. As highlighted by Figure 1, 𝜖-ADUM

reaches better performances than individually-trained models for

𝜖 ≤ 5, while 𝜖 = 5 is often presented as a realistic parameter for the

future of the tech industry (including advertising [4]). Indeed, the

ADUM framework offers a more robust and easily implementable

adaptation to noise addition than individual frameworks thanks

to its query architecture. Nevertheless, when considering large 𝜖

(corresponding to low privacy guarantees), we observe that the

great interaction between aggregation and noise addition is being

overruled by individual models which benefit from their complete

access to granular information. The significant drop in PEHE for

𝜖-TM can be explained by the privacy cost of using a supplementary

polynomial degree becoming profitable for a privacy budget 𝜖 ≥ 2.

3.1.3 Bias-variance trade-off illustration. The bias-variance trade-
off introduced in Corollary 1 is illustrated experimentally in Figure

2. Indeed, for every value of 𝜖 , as the number of groups increases,

the 𝑃𝐸𝐻𝐸 starts by decreasing because of the bias reduction (first

term of (7)) before increasing due to a penalizing variance (second

term of (7)) and the rising impact of the privacy-induced noise

addition (third term in (7)) − the two latter being due to an insuffi-

cient population in the groups. Furthermore, this experiment also

highlights the dependency between 𝜖 and the optimal number of

groups for 𝜖-ADUM. First, when 𝜖 increases, the optimal number of

groups increases and 𝜖-ADUM’s best performance improves. Then,

as illustrated by the two merged performance curves for 𝜖 = 50

and 𝜖 = 100, 𝜖-ADUM enters a capped regime for which the 𝜖-

differentially private perturbation becomes negligible compared to

errors inherent to ADUM (see 2 asymptotic regimes in Section 2.4).

3.2 Real data
CRITEO-UPLIFTv2 dataset [2] is an open large scale dataset con-

structed from incrementality A/B tests. Results are reported for

Figure 2: Test 𝑃𝐸𝐻𝐸 (lower is better) over 20 random
train/test splits selecting 20000 points, illustrating the 𝜖-
ADUM bias-variance trade-off with respect to the number
of groups 𝑝 for 5 selected 𝜖. For this experiment, 𝜎 = 0.1.

Figure 3: Comparison of test 𝐴𝑈𝑈𝐶 (higher is better) be-
tween individually-trained 𝜖-TM and two variations of 𝜖-
ADUM over 4 random train/test splits randomly selecting
1M points from CRITEO-UPLIFTv2. The tuned number of
groups for 𝜖-ADUM is annotated in blue and green while the
tuned regularization parameter 𝐶 is in red for 𝜖-TM.

the "visit" binary outcome, hence 𝜖-differentially private logistic

regressions [16] are used as prediction models in an 𝜖-TM method.

As presented in Section 2.2, 𝜖-ADUM is partition-dependant. For

a real dataset, trivial partitions of K such as one-dimensional regu-

lar cut are not sufficient anymore, and we propose to find a relevant

partition while preserving privacy guarantees by decomposing our

privacy budget 𝜖 in an
𝜖
2
-kmeans partitioning [25] − outputting

a partition 𝜋 − and a consecutive
𝜖
2
-ADUM along 𝜋 . It is worth

mentioning that in practice, the partition and its corresponding

mean queries could be provided by an external actor in order to

avoid any access to granular data.

As observed on synthetic data, 𝜖-ADUM appears to outperform

models with access to individual data for strict privacy guarantees

(𝜖 ≤ 5). Once again, when privacy guarantees loosen up, the 𝜖-

differentially private TM overtakes 𝜖-ADUM thanks to its access to
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granular data (see Figure 3). Moreover, the significant impact of the

partition is illustrated by the difference of performances between

one-dimensional regular cut (on the first feature) and
𝜖
2
-kmeans

partitioning even though the consecutive
𝜖
2
-ADUM is performed

with a halved privacy budget.

4 CONCLUSION
In this article, we introduce 𝜖-ADUM, a new uplift 𝜖-differentially

private method to learn uplift models from aggregated data. Then,

a theoretical study of this model is conducted giving insights on

its empirical error through the expression of a bias-variance trade-

off. Finally, on both synthetic and real data, 𝜖-ADUM is tested and

appears to outperform classical differentially private methods for

strong privacy guarantees (𝜖 ≤ 5) although the latter can access a

granular level of data.
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