
Tetrad: Actively Secure 4PC for Secure Training and Inference
Nishat Koti

Indian Institute of Science, Bangalore
Arpita Patra

Indian Institute of Science, Bangalore

Rahul Rachuri
Aarhus University, Denmark

Ajith Suresh
Indian Institute of Science, Bangalore

1 INTRODUCTION
Increased concerns about privacy coupled with policies such as
European Union General Data Protection Regulation (GDPR) make
it harder for multiple parties to collaborate on machine learning
computations. The emerging field of privacy-preserving machine
learning (PPML) addresses this issue by offering tools to let parties
perform computations without sacrificing privacy of the underly-
ing data. PPML can be deployed across various domains such as
healthcare, recommendation systems, text translation, etc., with
works like [2] demonstrating practicality.

One of the main ways in which PPML is realised is through the
paradigm of secure outsourced computation (SOC). Clients can
outsource the training/prediction computation to powerful servers
available on a ‘pay-per-use’ basis from cloud service providers. Of
late, secure multiparty computation (MPC) based techniques [5,
8, 9, 26, 29, 30, 33, 34, 37] have been gaining interest, where a
server enacts the role of a party in the MPC protocol. MPC [17, 39]
allows mutually distrusting parties to compute a function in a
distributed fashion while guaranteeing privacy of the parties’ inputs
and correctness of their outputs against any coalition of 𝑡 parties.

The goal of PPML is practical deployment, making efficiency a
primary consideration. Functions such as comparison, activation
functions (e.g., ReLU), are heavily used in machine learning. Instan-
tiating these functions via MPC naively turns out to be prohibitively
inefficient due to their non-linearity. Hence, there is motivation
to design specialised protocols that can compute these functions
efficiently. We work towards this goal in the 4-party (4PC) setting,
assuming honest majority [5, 9, 18, 21]. 4PC is interesting because
it buys us the following over 3PC (which is threshold optimal): (1)
independence from broadcast: broadcast can be achieved by a simple
protocol in which the sender sends to everyone and residual parties
exchange and apply a majority rule (2) efficient dot-product: 4PC
offers a more efficient dot-product protocol (which is an important
building block for several ML algorithms) with communication
complexity independent of feature size (3) simplicity and efficiency:
protocols are vastly more efficient and simpler in terms of design.
To enhance practical efficiency, many recent works [9, 13, 20, 33]
resort to the preprocessing paradigm, which splits the computation
into two phases; a preprocessing phase where input-independent
(but function-dependent) computationally heavy tasks can be com-
puted, followed by a fast online phase. Since the same functions in
ML are evaluated several times, this paradigm naturally fits the case
of PPML, where the ML algorithm is known beforehand. Further,
recent works [12–14] propose MPC protocols over 32 or 64 bit rings
to leverage CPU optimizations.

MPC protocols can be categorized as high-throughput [1, 3, 4,
8, 9, 16, 21, 29, 32, 33] and low-latency [6, 7], where the former,
based on secret-sharing, requires less communication compared to

the latter (garbled circuits). High-throughput protocols typically
work over the boolean ring Z2 or an arithmetic ring Z2ℓ and aim to
minimize communication overhead (bandwidth) at the expense of
non-constant rounds. While high-throughput protocols enable effi-
cient computation of functions such as addition, multiplication and
dot-product, other functions such as division are best performed
using garbled circuits. Activation functions such as ReLU used in
neural networks (NN) alternate between multiplication and com-
parison, wherein multiplication is better suited to the arithmetic
world and comparison to the boolean world. Hence, MPC protocols
working over different representations (arithmetic/boolean/garbled
circuit based) can be mixed to achieve better efficiency. This pro-
vided motivation for mixed protocols where each subprotocol is
executed in a world where it performs best. Mixed-protocol frame-
works [9, 14, 15, 29, 30, 32, 34, 35] have support for efficient ways
to switch between the worlds, thereby getting the best from each
of them. This work proposes a mixed-protocol PPML framework
via MPC with four parties and honest majority with active security.

Works such as [27, 29, 37] typically go for active security with
abort, where the adversary can act maliciously to obtain the output
and make honest parties abort. The stronger notion of fairness guar-
antees that either all or none of the parties obtain the output. This
incentivizes the adversary to behave honestly in resource-expensive
tasks such as PPML, as causing an abort will waste its resources.
Trident [9] showed that fairness can be achieved at the cost of
security with abort. In cases where the risk of failure of the system
is too high, for instance, when deploying PPML for healthcare ap-
plications, participants might want to avoid the case when none of
them receive the output. The way to tackle this issue is to modify
protocols to guarantee that the correct output is always delivered to
the participants irrespective of an adversary’s misbehaviour. This
is provided by guaranteed output delivery (GOD) or robustness. A
robust protocol prevents the adversary from repeatedly causing the
computations to rerun, thereby upholding the trust in the system.
We propose two variants of the framework – one with fairness and
the other with robustness. Our contributions are listed next.

2 OUR CONTRIBUTIONS
We make several contributions towards designing a practically ef-
ficient 4PC mixed-protocol framework, Tetrad [22], tolerating at
most one active corruption. It operates over the ring Z2ℓ and pro-
vides end-to-end conversions to switch between arithmetic, boolean
and garbled worlds. We assume a one-time key setup phase and
work in the (function-dependent) preprocessing model which paves
the way for a fast online phase.

Depending on the sensitivity of the application and the underly-
ing data, one might want different levels of security. For this, we
propose two variants of the framework, covering fairness (Tetrad)

Commpree Common Commpre Common A B G

ABY3 [29] 3 Abort 12dℓ 9dℓ 12dℓ + 84ℓ 9dℓ + 3ℓ ✓ ✓ ✓

BLAZE [33] 2 Fair 3ℓ 3ℓ 15ℓ 3ℓ ✓ ✓ ✗

SWIFT (3PC) [21] 2 Robust 3ℓ 3ℓ 15ℓ 3ℓ ✓ ✓ ✗

Mazloom et al. [27] 4 Abort 2ℓ 4ℓ 2ℓ 4ℓ ✓ ✓ ✗

Trident [9] 3 Fair 3ℓ 3ℓ 6ℓ 3ℓ ✓ ✓ ✓

Tetrad [22] 2 Fair 2ℓ 3ℓ 2ℓ 3ℓ ✓ ✓ ✓

SWIFT (4PC) [21] 2 Robust 3ℓ 3ℓ 4ℓ 3ℓ ✓ ✓ ✗

Fantastic Four [11] (Best) 4 Robust - 6ℓ ℓ 9ℓ ✓ ✓ ✗

Fantastic Four [11] (Worst) 3 Robust - 6(ℓ + 𝜅) ≈ 80ℓ + 76𝜅 9ℓ + 6𝜅 ✓ ✓ ✗

Tetrad-R [22] 2 Robust 2ℓ 3ℓ 2ℓ 3ℓ ✓ ✓ ✓

Parties Referencea #Active
Partiesb Security

Dot Productc Dot Product with TruncationConversionsd

3

4

aAmortized costs reported for 1 million operations bparties that carry out most of the computation during online phase c
ℓ - size of ring in bits, 𝜅 - security

parameter, d - length of vectors. dA, B, G: support for arithmetic, boolean, garbled worlds e ‘Comm’ - communication, ‘pre’ - preprocessing, ‘on’ - online

Table 1: Comparison of actively-secure MPC frameworks (3PC and 4PC) for PPML.

and robustness (Tetrad-R) guarantees. The fair variant improves
upon the state-of-the-art fair framework of Trident [9]. Tetrad-R
improves communication over the best robust protocols [11, 21],
while also providing support for secure training of neural networks.

2.1 Improved Arithmetic/Boolean 4PC
In Tetrad, the multiplication protocol has a communication cost
of only 5 ring elements as opposed to 6 in the state-of-the-art
framework of Trident [9]. Security is elevated to robustness via
Tetrad-R, which has a minimal overhead over the fair one, in the
preprocessing. Concretely, for a 64-bit ring with 40-bit statistical
security, the overhead per multiplication is 0.027 bits for a circuit
containing 220 multiplications. This means robustness essentially
comes free in the case of large circuits. The multiplication protocol
supports probabilistic truncation without overhead and multi-input
multiplication gates.

Probabilistic truncation without any overhead. Multiplication (and
dot product) with truncation forms an essential component while
working with fixed-point values. Techniques for probabilistic trun-
cation were proposed by [29, 30]. Recently, [27] gave an efficient in-
stantiation of truncation for 4PC with abort, based on the technique
of ABY3. Using that as a baseline, we show for the first time, how
fair and robust multiplication (and dot-product) with truncation
can be performed without any additional cost over a multiplication.

Multi-input multiplication. Inspired by [31, 32], we propose new
protocols for 3 and 4-input multiplication, allowing multiplication
of 3 and 4 inputs in one online round. Naively, performing a 4-input
multiplication follows a tree-based approach, and the required com-
munication is that of three 2-input multiplications and 2 online
rounds. Our contribution lies in keeping the communication and
the round of the online phase the same as that of 2-input multipli-
cation (i.e. invariant of the number of inputs). To achieve this, we
trade off the preprocessing cost. Looking ahead, multi-input multi-
plication, when coupled with the optimized parallel prefix adder
circuit from [32], brings in a 2× improvement in online rounds. It
also cuts down the online communication of secure comparison,
impacting PPML applications.

2.2 4PC Mixed-Protocol Framework
In addition to relying on the improved arithmetic/booleanworld, we
observe that a large portion of the computation in most MPC-based
PPML frameworks is done over these worlds. The garbled world
is used only to perform the non-linear operations (e.g. softmax)
that are expensive in the arithmetic/boolean world and switch back
immediately after. Leveraging this observation we propose tailor-
made GC-based protocols with end-to-end conversion techniques.

The tailor-made GC for the fair protocols, has the following
advantages over Trident – i) no use of commitments for the inputs,
and ii) no requirement of an explicit input sharing and output
reconstruction phase. The overall communication cost remains the
same as Trident with 1 GC and 2 online rounds. In addition, for
time-constrained applications we offer a variant that trades off
1 GC at the expense of 1 lesser online round. When it comes to
robustness, the state-of-the-art for GC protocols are [19], costing 12
GC and 2 rounds, and [7], costing 2 GC and 4 rounds. We propose
robust GC conversions for the first time, and they cost 2 GC and
have an amortized round complexity of 1.

As mentioned earlier, the framework operates over three do-
mains - arithmetic, boolean, and garbled. For an operation that re-
quires computing over the garbled domain, the standard approach
is to first switch fromArithmetic to Garbled and evaluate the garbled
circuit to obtain a garbled-shared output. These shares are brought
back to the arithmetic domain using a Garbled to Arithmetic conver-
sion. Our approach instead is to modify the garbled circuit such that
the output is in the arithmetic domain. This eliminates the need for
an explicit Garbled to Arithmetic conversion, saving in both commu-
nication and rounds in the online phase. End-to-end conversions
are of the form “x-Garbled-x” where x can be either arithmetic or
boolean, and need a single round for the garbled world.

Comparison of Tetrad with actively secure PPML frameworks in
3PC and 4PC is presented in Table 1. The dot product is chosen as a
parameter as it is one of the most crucial building blocks in PPML
applications.

3 IMPLEMENTATION AND BENCHMARKING
We benchmark training and inference phases of the following deep
NNs with varying parameter sizes, and the inference phase for

Support Vector Machines (SVM) using MNIST [25] and CIFAR-
10 [23] dataset. Training phase of SVM requires additional tools
and primitives, and is out of scope of this work. We refer readers to
[30, 38] for the architecture and description of training/inference
steps for the ML algorithms.
– SVM: Consists of 10 categories for classification [12].
– NN-1: Fully connected network with 3 layers [29, 33].
– NN-2: Convolutional neural network comprising of 2 hidden
layers, with 100 and 10 nodes [9, 29, 34].
– NN-3: LeNet [24], comprises of 2 convolutional and fully con-
nected layers, followed by maxpool for convolutional layers.
– NN-4: VGG16 [36] has 16 layers in total and contains fully-
connected, convolutional, ReLU activation and maxpool layers.
We evaluate NN-1, NN-3, SVM on MNIST dataset which is a

collection of 28 × 28 pixel, handwritten digit images with a label
between 0 and 9 for each. NN-2, NN-4 are evaluated on CIFAR-10
dataset which has 32 × 32 pixel images of 10 different classes such
as dogs, horses, etc. Benchmarks are against the state-of-the-art
4PC of Trident [9] and SWIFT [21] 4PC (supports only inference).

3.1 Benchmarking Environment Details
The protocols are benchmarked over a Wide Area Network (WAN),
instantiated using n1-standard-64 instances of Google Cloud1, with
machines located in East Australia (𝑃0), South Asia (𝑃1), South East
Asia (𝑃2), and West Europe (𝑃3). The machines are equipped with
2.0 GHz Intel (R) Xeon (R) (Skylake) processors supporting hyper-
threading, with 64 vCPUs, and 240 GB of RAM Memory. Parties
are connected by pairwise authenticated bidirectional synchronous
channels (e.g., instantiated via TLS over TCP/IP). We use a band-
width of 40 MBps between every pair of parties and the average
round-trip time (rtt)2 values among 𝑃0-𝑃1, 𝑃0-𝑃2, 𝑃0-𝑃3, 𝑃1-𝑃2, 𝑃1-
𝑃3, and 𝑃2-𝑃3 are 153.74𝑚𝑠 , 93.39𝑚𝑠 , 274.84𝑚𝑠 , 62.01𝑚𝑠 , 174.15𝑚𝑠 ,
and 219.46𝑚𝑠 respectively.

For a fair comparison, we implemented and benchmarked all the
protocols, including the protocols of Trident and SWIFT, building on
the ENCRYPTO library [10] in C++17. Primitives such as maxpool,
which Trident and SWIFT do not support, have been run using our
building blocks. We would like to clarify that our code is developed
for benchmarking, is not optimized for industry-grade use, and
optimizations like GPU support can further enhance performance.
Our protocols are instantiated over a 64-bit ring (Z264), and the
collision-resistant hash function is instantiated using SHA-256. We
use multi-threading, and our machines are capable of handling a
total of 64 threads. Experiments are run 10 times and average values
are reported. Batch size of 𝐵 = 128 for training and 1 KB = 8192.

3.2 Benchmarking Parameters
We evaluate the protocols across a variety of parameters as given in
Table 2. In addition to parameters such as runtime, communication,
and online throughput (TP) [3, 4, 9, 29], the cumulative runtime
(sum of the up-time of all the hired servers) is also reported. This is
because when deployed over third-party cloud servers, one pays
for them by the communication and the uptime of the hired servers.

1https://cloud.google.com/
2Time for communicating 1 KB of data between a pair of parties

To analyze the cost of deployment of the framework, monetary cost
(Cost) [28] is reported. This is done using the pricing of Google
Cloud Platform3, where for 1 GB and 1 hour of usage, the costs
are USD 0.08 and USD 3.04, respectively. For protocols with an
asymmetric communication graph, communication load is unevenly
distributed among all the servers, leaving several communication
channels underutilized. Load balancing improves the performance
by running several execution threads in parallel, each with the roles
of the servers changed. Load balancing has been performed in all
the protocols benchmarked.

Notation Description

Ton,i Online runtime of party 𝑃𝑖 .
Ttot,i Total runtime of party 𝑃𝑖 .
PTon Protocol online runtime; maxi{Ton,i} .
PTtot Protocol total runtime; maxi{Ttot,i} .
CTon Cumulative online runtime; Σ𝑖Ton,i .
CTtot Cumulative total runtime; Σ𝑖Ttot,i .
Common Online communication.
Commtot Total communication.
Cost Total monetary cost.

TP
Online throughput (higher = better)
(#iterations / #queries per minute in online)

Table 2: Benchmarking parameters (lower is better, except for TP)

3.2.1 Discussion. Broadly speaking, we consider two deployment
scenarios – optimized for time (T), and for cost (C). In the first
one (TetradT), participants want the result of the output as soon as
possible while maximizing the online throughput. In the second
one (TetradC), they want the overall monetary cost of the system to
be minimal and are willing to tolerate an overhead in the execution
time. Using multi-input multiplication gates and the 2 GC variant
of the garbled world makes the online phase faster but incurs an
increase in monetary cost. This is because they cause an overhead
in communication in the preprocessing phase, and communication
affects monetary cost more than uptime (in our setting).

We report only the numbers for the fair variant of Tetrad and not
the robust variant. This is because the overhead of robust over its
fair counterpart is very minimal for deep networks, like those con-
sidered in this work. Both variants are compared against Trident [9],
and their relative performance is indicated in Table 3.

Training Inference

Timeonb Comtot CTtot Cost TPon

TetradT
TetradC
Trident

Protocol
Training & Inferencea

a ‘Com’ - Communication, ‘Time’ - Runtime, ‘CT’ - Cumulative
Runtime, ‘Cost’ - Monetary Cost, ‘TPon’ - Online Throughput,
on - online, tot - total

b - good, - better, - best, (w.r.t parameter considered)
Table 3: Comparison of Trident [9] with the versions of
Tetrad [22] for deep neural networks (cf. NN-4 in §3).

Observe that Tetrad is better when compared to Trident across
all the parameters considered. Within Tetrad, TetradT fares better
3See https://cloud.google.com/vpc/network-pricing for network cost and
https://cloud.google.com/compute/vm-instance-pricing for computation cost.

when it comes to online run time for both training and inference,
while TetradC does better in terms of communication. When it
comes to inference, throughput is more relevant than the cost, and
here, the time-optimized variant fares the best. Robust variants
follow the same trends.

3.3 ML Training
For training we consider NN-1, NN-2, NN-3 and NN-4 networks.
We report values corresponding to one iteration, that comprises of
a forward and backward propagation.

Starting with the time-optimized variant, TetradT is 3− 4× faster
than Trident in online runtime. The primary factor is the reduction
in online rounds of our protocol due to multi-input gates. More
precisely, we use the depth-optimized bit extraction circuit while
instantiating the ReLU activation function using multi-input AND
gates. Looking at the total communication (Commtot) in Table 4,
we observe that the gap in Commtot between TetradT vs. Trident
decreases as the networks get deeper. This is justified as the im-
provement in communication of our dot product with truncation
outpaces the overhead in communication caused by multi-input
gates. The impact of this is more pronounced with NN-4, as ob-
served by the lower monetary cost of TetradT over Trident. Another
reason is that there are two active parties (𝑃1, 𝑃2) in our framework,
whereas Trident has three. Given the allocation of servers, the best
rtt Trident can get with three parties (𝑃0, 𝑃1, 𝑃2) is 153.74𝑚𝑠 , as
compared to 62.01𝑚𝑠 of Tetrad, contributing to Tetrad being faster.
However, if the rtt among all the parties were similar, this gap
would be closed. Concretely, the online runtime (PTon) of Trident
will be similar to that of TetradC.

Algorithm Parameter Trident TetradT TetradC

NN-2

PTon 8.13 2.05 2.67
PTtot 11.47 5.79 6.14
CTtot 30.88 14.82 13.40

Commtot 0.28 0.39 0.24
Cost 70.00 75.67 49.16
TP 428.16 652.75 644.69

NN-3

PTon 21.79 5.67 8.40
PTtot 30.66 15.14 17.87
CTtot 91.68 40.01 42.76

Commtot 1.59 1.94 1.28
Cost 331.01 343.73 240.41
TP 53.62 55.71 54.13

NN-4

PTon 72.01 25.90 38.35
PTtot 283.89 182.13 194.58
CTtot 859.09 500.13 522.32

Commtot 31.59 29.52 22.24
Cost 5779.27 5146.10 3999.30
TP 2.55 2.61 2.56

Table 4: Benchmarking of the training phase of ML algorithms.
Time (in seconds) and communication (in GB) are reported for 1
iteration. Monetary cost (USD) is reported for 1000 iterations.

The cost-optimized variant TetradC on the other hand, is 1.5×
slower in the online phase compared to TetradT. However, it is
still faster than Trident owing to the rtt setup, as discussed above.
For monetary cost, this variant is up to 20 − 40% cheaper than it’s
time-optimized counterpart, and by around 30% over Trident.

3.4 ML Inference
We benchmark the inference phase of SVM and the aforementioned
NNs. In addition to Trident [9], we also benchmark against the 4PC
robust protocol of SWIFT [21] since it supports NN inference.

Algorithm Parameter Trident TetradT TetradC SWIFT

SVM

PTon 17.09 2.91 4.77 5.21
PTtot 17.37 3.19 5.05 6.04
CTtot 47.02 6.99 10.70 14.47

Commtot 1.36 2.34 1.25 1.36
Cost 39.92 6.26 9.23 12.43
TP 898.80 5271.74 3221.29 2949.76

NN-3

PTon 14.42 2.61 4.10 4.54
PTtot 14.71 2.91 4.39 5.39
CTtot 39.92 6.43 9.40 13.18

Commtot 5.62 8.42 4.76 5.39
Cost 34.59 6.74 8.68 11.97
TP 1065.35 5882.44 3746.89 3384.51

NN-4

PTon 47.05 7.85 12.69 13.13
PTtot 47.61 8.44 13.28 14.33
CTtot 129.41 17.77 27.46 31.35

Commtot 85.69 124.09 71.27 81.33
Cost 122.66 34.40 34.32 39.18
TP 326.46 934.34 891.19 891.19

Table 5: Benchmarking of the inference phase of ML algorithms.
Time (in seconds) and communication (in MB) are reported for 1
query. Monetary cost (USD) is reported for 1000 queries.

Similar to training, the time-optimized variant for inference is
faster when it comes to PTon, by 4 − 6× over Trident. This is also
reflected in the TP, where the improvement is about 2.8 − 5.5×, as
evident from Figure 1. In inference, the communication is in the
order of megabytes, while run time is in the order of a few seconds.
The key observation is that communication is well suited for the
bandwidth used (40 MBps). So unlike training, the monetary cost in
inference depends more on run time rather than on communication.
This is evident from Table 5 which shows that TetradT saves on
monetary cost up to a factor of 6 over Trident.

Trident

TetradT

SVM NN-3 NN-4
0

2,000

4,000

6,000

TetradC

SVM NN-3 NN-4
0

2,000

4,000

6,000

SWIFT

Figure 1: Inference of SVM, NN-3 and NN-4: in terms of TP (higher
is better)

Note that the cost-optimized variant under performs in terms of
monetary cost compared to TetradT. This is because, as mentioned
earlier, run time plays a bigger role in monetary cost than commu-
nication. Hence for inference, the time-optimized variant becomes
the optimal choice.

REFERENCES
[1] Mark Abspoel, Anders Dalskov, Daniel Escudero, and Ariel Nof. 2019. An Efficient

Passive-to-Active Compiler for Honest-Majority MPC over Rings. Cryptology
ePrint Archive, Report 2019/1298. https://eprint.iacr.org/2019/1298.

[2] Javier Alvarez-Valle, Pratik Bhatu, Nishanth Chandran, Divya Gupta, Aditya V.
Nori, Aseem Rastogi, Mayank Rathee, Rahul Sharma, and Shubham Ugare. 2020.
Secure Medical Image Analysis with CrypTFlow. CoRR abs/2012.05064 (2020).
https://arxiv.org/abs/2012.05064

[3] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell, Ariel
Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein. 2017. Optimized Honest-
Majority MPC for Malicious Adversaries - Breaking the 1 Billion-Gate Per Second
Barrier. In 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, 843–862. https://doi.org/10.1109/SP.2017.15

[4] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.
2016. High-Throughput Semi-Honest Secure Three-Party Computation with
an Honest Majority. In ACM CCS 2016, Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi (Eds.). ACM Press,
805–817. https://doi.org/10.1145/2976749.2978331

[5] Megha Byali, Harsh Chaudhari, Arpita Patra, and Ajith Suresh. 2020. FLASH:
Fast and Robust Framework for Privacy-preserving Machine Learning. PoPETs
2020, 2 (April 2020), 459–480. https://doi.org/10.2478/popets-2020-0036

[6] Megha Byali, Carmit Hazay, Arpita Patra, and Swati Singla. 2019. Fast Actively
Secure Five-Party Computation with Security Beyond Abort. In ACM CCS 2019,
Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz (Eds.).
ACM Press, 1573–1590. https://doi.org/10.1145/3319535.3345657

[7] Megha Byali, Arun Joseph, Arpita Patra, and Divya Ravi. 2018. Fast Secure
Computation for Small Population over the Internet. In ACM CCS 2018, David Lie,
Mohammad Mannan, Michael Backes, and XiaoFeng Wang (Eds.). ACM Press,
677–694. https://doi.org/10.1145/3243734.3243784

[8] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. 2019. AS-
TRA: High Throughput 3PC over Rings with Application to Secure Prediction.
In ACM CCSW@CCS. https://eprint.iacr.org/2019/429

[9] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. 2020. Trident: Efficient 4PC
Framework for Privacy Preserving Machine Learning. In NDSS 2020. The Internet
Society.

[10] Cryptography and Privacy Engineering Group at TU Darmstadt. 2017. EN-
CRYPTO Utils. https://github.com/encryptogroup/ENCRYPTO_utils.

[11] Anders Dalskov, Daniel Escudero, andMarcel Keller. 2021. Fantastic Four: Honest-
Majority Four-Party Secure Computation With Malicious Security. In USENIX
Security’21. https://eprint.iacr.org/2020/1330.

[12] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Pe-
ter Scholl, and Nikolaj Volgushev. 2019. New Primitives for Actively-Secure
MPC over Rings with Applications to Private Machine Learning. In 2019 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, 1102–1120.
https://doi.org/10.1109/SP.2019.00078

[13] Ivan Damgård, Claudio Orlandi, andMark Simkin. 2018. Yet Another Compiler for
Active Security or: Efficient MPC Over Arbitrary Rings. In CRYPTO 2018, Part II
(LNCS), Hovav Shacham and Alexandra Boldyreva (Eds.), Vol. 10992. Springer,
Heidelberg, 799–829. https://doi.org/10.1007/978-3-319-96881-0_27

[14] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY - A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation. In NDSS 2015.
The Internet Society.

[15] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
2020. Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits. In
CRYPTO 2020, Part II (LNCS), Daniele Micciancio and Thomas Ristenpart (Eds.),
Vol. 12171. Springer, Heidelberg, 823–852. https://doi.org/10.1007/978-3-030-
56880-1_29

[16] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein. 2017. High-
Throughput Secure Three-Party Computation for Malicious Adversaries and
an Honest Majority. In EUROCRYPT 2017, Part II (LNCS), Jean-Sébastien Coron
and Jesper Buus Nielsen (Eds.), Vol. 10211. Springer, Heidelberg, 225–255. https:
//doi.org/10.1007/978-3-319-56614-6_8

[17] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority. In 19th
ACM STOC, Alfred Aho (Ed.). ACM Press, 218–229. https://doi.org/10.1145/28395.
28420

[18] S. Dov Gordon, Samuel Ranellucci, and Xiao Wang. 2018. Secure Computation
with Low Communication from Cross-Checking. In ASIACRYPT 2018, Part III
(LNCS), Thomas Peyrin and Steven Galbraith (Eds.), Vol. 11274. Springer, Heidel-
berg, 59–85. https://doi.org/10.1007/978-3-030-03332-3_3

[19] Yuval Ishai, Ranjit Kumaresan, Eyal Kushilevitz, and Anat Paskin-Cherniavsky.
2015. Secure Computation with Minimal Interaction, Revisited. In CRYPTO 2015,
Part II (LNCS), Rosario Gennaro and Matthew J. B. Robshaw (Eds.), Vol. 9216.
Springer, Heidelberg, 359–378. https://doi.org/10.1007/978-3-662-48000-7_18

[20] Marcel Keller, Valerio Pastro, and Dragos Rotaru. 2018. Overdrive: Making
SPDZ Great Again. In EUROCRYPT 2018, Part III (LNCS), Jesper Buus Nielsen
and Vincent Rijmen (Eds.), Vol. 10822. Springer, Heidelberg, 158–189. https:

//doi.org/10.1007/978-3-319-78372-7_6
[21] Nishat Koti, Mahak Pancholi, Arpita Patra, and Ajith Suresh. 2021. SWIFT: Super-

fast and Robust Privacy-Preserving Machine Learning. In USENIX Security’21.
https://eprint.iacr.org/2020/592.

[22] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. 2021. Tetrad: Actively
Secure 4PC for Secure Training and Inference. IACR Cryptol. ePrint Arch. (2021).
https://eprint.iacr.org/2021/755.

[23] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. 2014. The CIFAR-10 dataset.
(2014). https://www.cs.toronto.edu/~kriz/cifar.html.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE (1998), 2278–2324.

[25] Yann LeCun and Corinna Cortes. 2010. MNIST handwritten digit database. (2010).
http://yann.lecun.com/exdb/mnist/

[26] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren. 2019.
EPIC: Efficient Private Image Classification (or: Learning from the Masters). In
CT-RSA 2019 (LNCS), Mitsuru Matsui (Ed.), Vol. 11405. Springer, Heidelberg,
473–492. https://doi.org/10.1007/978-3-030-12612-4_24

[27] SaharMazloom, Phi Hung Le, Samuel Ranellucci, and S. Dov Gordon. 2020. Secure
parallel computation on national scale volumes of data. In USENIX Security 2020,
Srdjan Capkun and Franziska Roesner (Eds.). USENIX Association, 2487–2504.

[28] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti Yung. 2020.
Two-Sided Malicious Security for Private Intersection-Sum with Cardinality. In
CRYPTO 2020, Part III (LNCS), Daniele Micciancio and Thomas Ristenpart (Eds.),
Vol. 12172. Springer, Heidelberg, 3–33. https://doi.org/10.1007/978-3-030-56877-
1_1

[29] Payman Mohassel and Peter Rindal. 2018. ABY3 : A Mixed Protocol Framework
for Machine Learning. InACMCCS 2018, David Lie, MohammadMannan, Michael
Backes, and XiaoFeng Wang (Eds.). ACM Press, 35–52. https://doi.org/10.1145/
3243734.3243760

[30] Payman Mohassel and Yupeng Zhang. 2017. SecureML: A System for Scalable
Privacy-Preserving Machine Learning. In 2017 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, 19–38. https://doi.org/10.1109/SP.2017.12

[31] Satsuya Ohata and Koji Nuida. 2020. Communication-Efficient (Client-Aided)
Secure Two-Party Protocols and Its Application. In FC 2020 (LNCS), Joseph
Bonneau and Nadia Heninger (Eds.), Vol. 12059. Springer, Heidelberg, 369–385.
https://doi.org/10.1007/978-3-030-51280-4_20

[32] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. ABY2.0:
Improved Mixed-Protocol Secure Two-Party Computation. In USENIX Security’21.
https://eprint.iacr.org/2020/1225.

[33] Arpita Patra and Ajith Suresh. 2020. BLAZE: Blazing Fast Privacy-Preserving
Machine Learning. In NDSS 2020. The Internet Society.

[34] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M. Songhori,
Thomas Schneider, and Farinaz Koushanfar. 2018. Chameleon: A Hybrid Secure
Computation Framework for Machine Learning Applications. In ASIACCS 18,
Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo
Kim (Eds.). ACM Press, 707–721.

[35] Dragos Rotaru and Tim Wood. 2019. MArBled Circuits: Mixing Arithmetic and
Boolean Circuits with Active Security. In INDOCRYPT 2019 (LNCS), Feng Hao,
Sushmita Ruj, and Sourav Sen Gupta (Eds.), Vol. 11898. Springer, Heidelberg,
227–249. https://doi.org/10.1007/978-3-030-35423-7_12

[36] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[37] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. PoPETs 2019, 3 (July 2019),
26–49. https://doi.org/10.2478/popets-2019-0035

[38] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek
Mittal, and Tal Rabin. 2021. Falcon: Honest-Majority Maliciously Secure Frame-
work for Private Deep Learning. PoPETs 2021, 1 (Jan. 2021), 188–208. https:
//doi.org/10.2478/popets-2021-0011

[39] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended
Abstract). In 23rd FOCS. IEEE Computer Society Press, 160–164. https://doi.org/
10.1109/SFCS.1982.38

https://eprint.iacr.org/2019/1298
https://arxiv.org/abs/2012.05064
https://doi.org/10.1109/SP.2017.15
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.2478/popets-2020-0036
https://doi.org/10.1145/3319535.3345657
https://doi.org/10.1145/3243734.3243784
https://eprint.iacr.org/2019/429
https://github.com/encryptogroup/ENCRYPTO_utils
https://eprint.iacr.org/2020/1330
https://doi.org/10.1109/SP.2019.00078
https://doi.org/10.1007/978-3-319-96881-0_27
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-030-56880-1_29
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1007/978-3-319-56614-6_8
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/978-3-030-03332-3_3
https://doi.org/10.1007/978-3-662-48000-7_18
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://eprint.iacr.org/2020/592
https://eprint.iacr.org/2021/755
https://www.cs.toronto.edu/~kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1007/978-3-030-12612-4_24
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1007/978-3-030-56877-1_1
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1145/3243734.3243760
https://doi.org/10.1109/SP.2017.12
https://doi.org/10.1007/978-3-030-51280-4_20
https://eprint.iacr.org/2020/1225
https://doi.org/10.1007/978-3-030-35423-7_12
https://doi.org/10.2478/popets-2019-0035
https://doi.org/10.2478/popets-2021-0011
https://doi.org/10.2478/popets-2021-0011
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

	1 Introduction
	2 Our Contributions
	2.1 Improved Arithmetic/Boolean 4PC
	2.2 4PC Mixed-Protocol Framework

	3 Implementation and Benchmarking
	3.1 Benchmarking Environment Details
	3.2 Benchmarking Parameters
	3.3 ML Training
	3.4 ML Inference

	References

