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ABSTRACT
Protocols satisfying Local Differential Privacy (LDP) allow users to

protect the privacy of data they contribute for aggregation without

the need to trust the aggregator. Optimal Multiple Encoding (OME)

is a novel protocol presented at SIGIR 2020 to noisily encode textual

data, which has been shown to enable learning from encoded text

without hurting utility. OME encodes real-valued word embeddings

as fixed-length binary strings and perturbs even and odd bits in-

dependently, flipping them with probabilities determined by the

length of the encoding, the privacy budget 𝜖 , and a randomization

factor _. We show that the purported proof that OME satisfies 𝜖-

LDP independently of the encoding length and _ cannot hold. We

present linkability and partial reconstruction attacks against OME

and experimentally show that OME provides no meaningful privacy

for parameter values that preserve utility. We confirm this finding

using DP-Sniper, an off-the-shelf tool for discovery of differential

privacy violations. For the same parameters used to experimentally

show the utility of OME, DP-Sniper finds distinguishing attacks

that imply that the privacy budget spent is at least 4600x higher

than expected. We finally revisit the proof of LDP of OME and

show that the level of privacy that it actually provides scales lin-

early with _ and exponentially on the encoding length, confirming

our experimental findings.
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1 INTRODUCTION
Recent breakthroughs in natural language representation and un-

derstanding have been achieved by pre-training increasingly larger

models on increasingly larger quantities of public textual data. Mod-

els pre-trained in this way still require to be fine-tuned to specific

domains and tasks using high-quality sensitive data. Collecting

this data poses multiple challenges, such as respecting privacy reg-

ulations and legal contracts, and reassuring data owners that no

sensitive information would be leaked.

Differential privacy is the gold standard among the multiple

privacy-preserving techniques that have been developed to protect

users’ privacy. In the distributed setting, protocols that achieve

Local Differential Privacy (LDP) allow an aggegator to collate data

contributed by individual users without relying on a trusted third

party or expensive cryptographic techniques, such as multi-party

computation and homomorphic encryption. Compared to Central

Differential Privacy (CDP) where noise is added during aggrega-

tion, in LDP protocols individual users add noise before sending
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information to the aggregator. However, to achieve a meaningful

level of privacy LDP requires adding a larger amount of noise with

the subsequent decrease in utility. This often shows on CDP proto-

cols outperforming LDP protocols in terms of the utility/privacy

trade-off.

In recent work, Lyu et al. [3] address this drawback by proposing

Optimized Multiple Encoding (OME), a novel LDP protocol for tex-

tual data inspired by RAPPOR [5] that achieves exceedingly good

utility on classification tasks. Unlike the basic RAPPOR scheme,

Symmetric Unary Encoding (SUE), and Optimized Unary Encod-

ing (OUE) [4], but similarly to RAPPOR and other hashing-based

schemes, OME uses a fixed-length binary encoding instead of a

one-hot-encoding and introduces a new hyperparameter _, called

randomization factor. In OME, real-valued word embeddings in a

sentence are encoded as bitstrings of length ℓ =𝑚 + 𝑛 + 1, using𝑚

bits for the integral part, 𝑛 bits for the fractional part and 1 bit for

the sign, and perturbed independently. A given text of maximum

length 𝑟 is thus padded and encoded as a bitstring of length 𝑟 ℓ .

The randomization factor _ determines the probability with which

individual bits are flipped. This probability depends on whether a

bit is at an even or and odd position in an encoded embedding, and

similar to OUE, on both whether the bit is set or not.

Surprisingly, Lyu et al. [3] show that the privacy guarantee of

OME is independent of _ and the representation length 𝑟 ℓ . In this

paper, we scrutinize this purported privacy guarantee. We start

by developing a Hop-on Hop-off (HoHo) attack, which exploits

the difference with which each bit is flipped introduced by _ to

break privacy of text encoding with OME. We then revisit the proof

of LDP privacy of OME, identify a flaw and fix it by revising the

privacy bound. Our revised proof shows that indeed, the privacy of

OME depends linearly on _ and exponentially on the representation

length, so that the influence of _ outweighs other factors.

Finally, we confirm our findings using DP-Sniper [1], a state-

of-the-art black-box detector for differetial privacy violations. The

results of DP-Sniper confirm our findings and show the high de-

pendency on _ of the OME privacy guarantee.

2 OPTIMIZED MULTIPLE ENCODING (OME)
In this section, we start by presenting the local differential private

(LDP) protocol proposed by Lyu et al. [3], namely the Optimized

Multiple Encoding (OME), then present its proof.

2.1 OME Protocol
OME aims at generating differentially private text representation

while preserving enough utility to train state-of-the-art Natural

language Processing (NLP) based models.
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The OME mechanism introduces two main changes to the cur-

rent state-of-the-art 𝜖-LDP protocols, i.e., Symmetric Unary Encod-

ing (SUE) [5] and Optimized Unary Encoding (OUE) [4]. Firstly,

instead of using one-hot encoding to encode the inputs (in this case,

the text embeddings), they encode the values into binary vectors

with length 𝑙 . Thus, for an embedding with 𝑟 elements, the sensi-

tivity of OME is 𝑟𝑙 . Secondly, OME follows the OUE mechanism of

perturbing bits with the values 0 and 1 with different probabilities.

However, it further improves the encoded vectors utility by intro-

ducing a hyperparameter that further controls the probability of

perturbing the bits depending on their locations, namely _. Intu-

itively, increasing _ increases the probability of preserving the even

bits of the vector and decreases the one for the odd bits. Hence, the

OME mechanism should preserve both utility and privacy. More

formally, in [3] the authors present the following theorem that

formalizes the guarantees of the OME:

Theorem 2.1. For any inputs 𝑣, 𝑣 ′ and any encoded bit vector 𝐵
with sensitivity 𝑟𝑙 , OME provides 𝜖-LDP given

𝑝 = Pr{1 → 1} =
{

_
1+_ , for 𝑖 ∈ 2𝑛
1

1+_3 , for 𝑖 ∈ 2𝑛 + 1

(1)

𝑞 = Pr{0 → 1} = 1

1 + _𝑒
𝜖
𝑟𝑙

(2)

2.2 OME Proof
In [3] the authors present the following proof to prove the previ-

ously presented theorem (Theorem 2.1).

Proof. Let 𝑣 and ®𝐵 represent an input and its encoded bit repre-

sentation. Given that ®𝐵 has a sensitivity of 𝑟𝑙 , the privacy budget 𝜖

needs to be divided by the sensitivity for each bit. By setting

𝑝 = Pr{1 → 1} =
{

_
1+_ , for 𝑖 ∈ 2𝑛
1

1+_3 , for 𝑖 ∈ 2𝑛 + 1

𝑞 = Pr{0 → 1} = 1

1 + _𝑒
𝜖
𝑟𝑙

1−𝑝 = Pr{1 → 0} =
{

1

1+_ , for 𝑖 ∈ 2𝑛

_3

1+_3 , for 𝑖 ∈ 2𝑛 + 1

1−𝑞 = Pr{0 → 0} = _𝑒
𝜖
𝑟𝑙

1 + _𝑒
𝜖
𝑟𝑙

Then for any inputs 𝑣, 𝑣 ′, we have

Pr{ ®𝐵 |𝑣 }
Pr{ ®𝐵 |𝑣′ }

=

∏𝑟𝑙
𝑖=1 Pr{𝐵 [𝑖 ] |𝑣 }∏𝑟𝑙
𝑖=1 Pr{𝐵 [𝑖 ] |𝑣′ }

=

∏
𝑖∈2𝑛 Pr{𝐵 [𝑖 ] |𝑣 }∏
𝑖∈2𝑛 Pr{𝐵 [𝑖 ] |𝑣′ } ×

∏
𝑖∈2𝑛+1 Pr{𝐵 [𝑖 ] |𝑣 }∏
𝑖∈2𝑛+1 Pr{𝐵 [𝑖 ] |𝑣′ }

≤
(
Pr{1 → 1}
Pr{1 → 0} × Pr{0 → 0}

Pr{0 → 1}

) 𝑟𝑙
2

𝑖∈2𝑛
×
(
Pr{1 → 1}
Pr{1 → 0} × Pr{0 → 0}

Pr{0 → 1}

) 𝑟𝑙
2

𝑖∈2𝑛+1

=

©«
_
1+_
1

1+_
×

_𝑒
𝜖
𝑟𝑙

1+_𝑒
𝜖
𝑟𝑙

1

1+_𝑒
𝜖
𝑟𝑙

ª®®®¬
𝑟𝑙
2

×
©«

1

1+_3
_3

1+_3
×

_𝑒
𝜖
𝑟𝑙

1+_𝑒
𝜖
𝑟𝑙

1

1+_𝑒
𝜖
𝑟𝑙

ª®®®¬
𝑟𝑙
2

= 𝑒𝜖

□

3 REVISITING THE OME
In this section, we first present our intuition and technique of our

HoHo attack against the OME mechanism. Next, we revisit the

OME’s original proof to compare it against our results.

3.1 The Hop-on Hop-off Attack
Since the OME mechanism provides a better utility by mainly main-

taining the even bits with a high probability, we believe that an

adversary can utilize this information presented in the even bits to

break the OME. To this end, we present our Hop-on Hop-off (HoHo)

attack, where the adversary selectively considers a subset of the

bits, i.e., the adversary focus (hops on) the even bits and ignores

(hops off) the odd ones. More concretely, for an encoded sentence

𝑠 and a plaintext sentence 𝑡 , we first calculate the embedding of 𝑡

without any perturbation. Next, we compute a matching score by

comparing the values of even bits of 𝑠 and the embedded version of

𝑡 . The larger the matching score, the higher the probability that this

encoded sentence 𝑠 is the output of the OME when encoding the

plaintext sentence 𝑡 . We present our HoHo attack in Algorithm 1.

We follow [2] and explore different settings where the adversary

can use the HoHo attack to infer different information from the

OME’s encodings. We briefly discuss these settings below:

(1) Distinguishability: The first setting we consider is distin-

guishability. In this setting, an adversary aims at distinguish-

ing if a given encoding corresponds to a specific sentence or

not. For instance, the adversary can give a challenger two

sentences with the same concept function [2]. The challenger

then randomly picks one of these sentences and encodes it

using OME. Next, the challenger sends the encoding to the

adversary. Given the encoding, the adversary tries to deter-

mine which sentence was encoded. The adversary wins this

game if they predict the correct encoded sentence.

(2) Linking: In the second setting, namely Linking, we try to

generalize the first one. More concretely, instead of pick-

ing two sentences with the same concept. The adversary is

given a list of different encodings and a target sentence. The

adversary wins if they can link the target sentence to its

corresponding encodings inside the given list. Constructing

this list of encodings can relax the assumptions needed for

the concept function used in the distinguishability setting.

For instance, using the encoding of the complete dataset in

addition to multiple occurrences of the target sentence in

the encoding list ensures that there exist multiple sentences

with the same concept as the target sentence.

(3) Reconstruction: Finally, the most complex setting is the re-

construction one. In this setting, the adversary tries to recon-

struct the original sentence/embedding given the encoding.

In this paper, we consider the two most complex settings, namely

Linking and Reconstruction.

Linking: We first evaluate our HoHo attack in the linking setup.

To this end, we construct the list of embeddings by encoding the

target sentence 100 times and mixing these encodings with the

encodings of the complete dataset. Next, we use our HoHo attack to

calculate the score between each encoding and the target sentence

embedding. We set the labels to be 1 for the target sentences and

0 otherwise. Finally, we calculate the AUC score for the different

scores and their corresponding labels.

To implement this attack, we use the code published by the au-

thors for the OME algorithm
1
[3], and implement our attack using

1
https://github.com/lingjuanlv/Differentially-Private-Text-Representations
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(b) Reconstruction Attack

Figure 1: The results of the linking (Figure 1a) and reconstruction (Figure 1b) settings using our HoHo attack for different
values of 𝜖 when using OME (with multiple values of _), SUE and OUE. As the figure shows, independent of the value of 𝜖, our
attack can achieve a perfect AUC score for the large values of _.

python. We will publish the code of our attack for reproduction. We

follow the authors and use the yelp dataset for evaluating our HoHo

attack. We sample 800 random reviews to create our dataset and

randomly sample 10% for the target sentences. Finally, we perform

the HoHo attack in the linking setting independently on each target

sentence and take the average – and standard deviation – for the

different runs.

We evaluate our attack using two 𝜖 values, i.e., 0.001 and 1, to

show its effectiveness. For each of the 𝜖 values, we evaluate theOME,

SUE, and OUE mechanisms. Moreover, for the OME mechanism,

we try different values for _, namely 1, 10, and 100. Finally, we plot

our attack results in Figure 1a.

As the figure shows, independently of the 𝜖 used, when the value

of _ is high, i.e., 10 or more, our HoHo attack can achieve a perfect

AUC of 1.0. Dropping the _ to 1, makes the performance of the

OME – in terms of privacy – similar to the one of SUE and OUE.

However, it is important to mention that with low values of _, the

OME loses its advantage of better utility compared to the other two

mechanisms (OUE and SUE) [3].

Reconstruction: Second, we evaluate the reconstruction setting.

In this setting, we aim at reconstructing the even bits of the encod-

ing. To this end, we reconstruct the even bits by taking the ones

of the encoding as is. We use the same evaluation setting as the

one previously introduced in the Linking setting, except for using

the accuracy to measure the performance of our attack, i.e., we

calculate accuracy between the reconstructed bits and the original

ones.

Figure 1b plots the results of our reconstruction attack. As ex-

pected, the higher the value of _, the more successful our attack is.

For instance, our attack is able to achieve 99% accuracy for _ = 100,

for both values of 𝜖 . The performance drops to 91% when _ drops

Input: encoded sentence 𝑠 , plaintext sentence 𝑡

Output: the matching score 𝑎𝑐𝑐

𝑒𝑡 = 𝑒𝑚𝑏𝑒𝑑(𝑡 ) //Calculating the embedding of 𝑡
𝑎𝑐𝑐 = 0 //Initializing the matching score
for 𝑖 = 0 to 𝑙𝑒𝑛(𝑒𝑡 ) do
//both vectors 𝑒𝑡 and 𝑠 have the same length
if 𝑖%2 == 0 then

//This is an even bit
𝑎𝑐𝑐 = 𝑎𝑐𝑐 + (𝑒𝑡 [𝑖] == 𝑠 [𝑖])

end if
end for
//Normalizing the matching score
𝑎𝑐𝑐 = 𝑎𝑐𝑐/𝑓 𝑙𝑜𝑜𝑟 (𝑙𝑒𝑛(𝑒𝑡 )/2)

Algorithm 1: The Hop-on Hop-off Attack

to 10. Similar to the linking settings, when _ is equal to 1, the per-

formance of the OME achieves approximately random guessing

accuracy (50%) as the SUE and OUE mechanisms.

The results of this and the linking settings clearly demonstrate

the privacy leakage of the OME with high values of _. Moreover,

they show that the privacy leakage of OME is highly dependant on

the value of _.

3.2 Revisiting The Proof
As previously demonstrated, our results show that the OME’s pri-

vacy guarantees depend on _ in addition to 𝜖 , i.e., the higher the _,

the better our attacks are. Hence, we revisit the proof previously

presented in Section 2.2, as it shows that the privacy guarantees

are independent of _.

We believe the proof (Section 2.2) does not assume the worst

case when performing the analysis (the second line of the proof in

Section 2.2). Thus, we now present the modified proof with what

we believe is the worst case:

3
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Proof. For any inputs inputs 𝑣, 𝑣 ′, and output ®𝐵 we have:

Pr{ ®𝐵 |𝑣}
Pr{ ®𝐵 |𝑣 ′}

=

∏𝑟𝑙
𝑖=1 Pr{𝐵 [𝑖] |𝑣}∏𝑟𝑙
𝑖=1 Pr{𝐵 [𝑖] |𝑣 ′}

=∏
𝑖∈2𝑛 Pr{𝐵 [𝑖] |𝑣}∏
𝑖∈2𝑛 Pr{𝐵 [𝑖] |𝑣 ′}

×
∏

𝑖∈2𝑛+1 Pr{𝐵 [𝑖] |𝑣}∏
𝑖∈2𝑛+1 Pr{𝐵 [𝑖] |𝑣 ′}

(3)

∏
𝑖∈2𝑛 Pr{𝐵 [𝑖 ] = 1 |𝑣 }∏
𝑖∈2𝑛 Pr{𝐵 [𝑖 ] = 1 |𝑣′ } ×

∏
𝑖∈2𝑛+1 Pr{𝐵 [𝑖 ] = 0 |𝑣 }∏
𝑖∈2𝑛+1 Pr{𝐵 [𝑖 ] = 0 |𝑣′ } =∏

𝑖∈2𝑛 𝑝∏
𝑖∈2𝑛 1 − 𝑝

×
∏

𝑖∈2𝑛+1 1 − 𝑞∏
𝑖∈2𝑛+1 𝑞

=

∏
𝑖∈2𝑛

_
1+_∏

𝑖∈2𝑛 1 − _
1+_

×

∏
𝑖∈2𝑛+1 1 − 1

1+_𝑒
𝜖
𝑟𝑙∏

𝑖∈2𝑛+1
1

1+_𝑒
𝜖
𝑟𝑙

=

∏
𝑖∈2𝑛

_
1+_∏

𝑖∈2𝑛
1

1+_
×

∏
𝑖∈2𝑛+1

_𝑒
𝜖
𝑟𝑙

1+_𝑒
𝜖
𝑟𝑙∏

𝑖∈2𝑛+1
1

1+_𝑒
𝜖
𝑟𝑙

=

∏
𝑖∈2𝑛

_ ×
∏

𝑖∈2𝑛+1
_𝑒

𝜖
𝑟𝑙 = _

𝑟𝑙
2 × (_𝑒

𝜖
𝑟𝑙 )

𝑟𝑙
2

= _
𝑟𝑙
2 × _

𝑟𝑙
2 𝑒

𝜖
2 = _𝑟𝑙𝑒

𝜖
2

(4)

□

Equation 3 is due to bits being encoded/flipped independently. Equa-

tion 4 is because this probability is maximized when the even bits

of 𝑣 and ®𝐵 are set to 1 and the odd bits to 0, and 𝑣 ′ to the inverse of

them.

This confirms our intuition that the OME’s privacy guarantees

indeed depend on the value of _.

4 DP SNIPER
To further confirm our findings, we use a state-of-the-art technique

for automatically finding the differential privacy violations. Namely,

we the DP-Sniper [1], which provides a black-box tool for the

detection of such violations.

We again use the code published by the authors, however, we

simplify the following for DP-Sniper:

(1) Instead of encoding a vector of floating numbers, we simplify

it to a single floating number.

(2) We limit the input to the OME mechanism to be any floating

number from -10 to 10.

With those simplifications, we run the DP-Sniper for multiple

values of 𝜖 (0.001 and 1) and _ (1, 10, and 100), and plot the results

in Figure 2.

Figure 2a and Figure 2b shows the DP-Sniper results for the

𝜖 = 0.001 and 𝜖 = 1 cases, respectively. As expected, the practical 𝜖

clearly exceeds the theoretical one for large values of _. For instance,

the estimated 𝜖 for the OME mechanism with _ = 100 exceeds the

theoretical one with a factor of 4,600 and 4.6 when setting the

theoretical 𝜖 to 0.001 and 1, respectively. Decreasing _ to 10 reduces

the estimated 𝜖 , however, it still exceeds the theoretical one with a

factor of 2,900 and 2.8 for both values of theoretical 𝜖 (0.001 and 1).

Finally, similar to our previous findings, settings _ = 1 satisfies the

𝜖-LDP guarantees.

The results of the DP-Sniper confirms our findings:

(1) The OME privacy guarantees depend on the value of _.

(2) For high values of _, the OME mechanism leaks information

above the expected guarantees.

(3) The influence of _ on the privacy of the OME mechanism

tremendously outweighs the one of 𝜖 .

1 10 1000

1

2

3

4

Theoretical 

(a) 𝜖 = 0.001

1 10 1000

1

2

3

4

Theoretical 

(b) 𝜖 = 1

Figure 2: The results of running DP-Sniper against the OME
mechanism with different values of 𝜖. Figure 2a and Fig-
ure 2b shows the results for 𝜖 = 0.001 and 𝜖 = 1, respectively.
We plot the theoretical 𝜖 (the red dotted line) to compare the
privacy leakage of the different settings. An 𝜖-LDP mecha-
nism should have practical 𝜖 lower than the theoretical one,
i.e., it should be below the red line. As both figures show, us-
ing high values of _ can lead to significant privacy leakage.

5 CONCLUSION
In this paper, we present the Hop-on Hop-off (HoHo) attack against

the state-of-the-art differentially private text representations, namely

the Optimized Multiple Encoding (OME). Our attack achieves a

strong performance for the different values of 𝜖 . We revisit the

OME proof and propose a new one that proves the dependency of

the OME’s privacy guarantees on _. Finally, we use an off-the-shelf

state-of-the-art differential privacy violation detector, namely DP-

Sniper, to validate our findings and show the privacy leakage of the

OME mechanism.
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