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1 Introduction

Machine learning (ML) models learn the correlation between
input features and output labels through a set of examples,
the training set. These models have been shown to memo-
rize information specific to their training set, which causes
severe privacy concerns when the training data is sensitive
by nature.

In our work, we focus on membership inference attacks
as the main method to assess privacy. Membership inference
attacks aim at determining if a sample belongs to the training
set of a model. For such an attack, the adversary has access
to a target sample and the model. If an attacker cannot even
determine membership, it is considered infeasible to obtain
more detailed information. Therefore, robustness against
membership inference attacks prevents other, more severe,
privacy violations.

Furthermore, we expose the risk of sensitive information
leakage from ML models in the form of attribute inference
attacks. In these attacks, having partial knowledge of a sam-
ple in the training set, an adversary tries to extract sensitive
information about the sample from the target model. We
study several attribute inference strategies against ML mod-
els. Our framework allows us to formalise these problems,
draw privacy guarantees in a worst-case scenario and find
connections between generalization and privacy.

Summary of contributions. We propose a novel and
flexible formalism for the study of inference attacks that
captures both membership and attribute inference problems
by modeling the target attribute as a finite random variable.

1. Characterization of the optimal attacker. By considering
the success probability of the optimal attacker, we are able
to draw strong conclusions about the privacy of a ML model.
The optimal attacker has perfect knowledge of the under-
lying probability distributions and from that it evaluates
the conditional probability mass functions of the sensitive
attribute, given the observed data. As such, it provides an
upper bound to the probability of success of any attack strat-
egy (Theorem 3.1). As a matter of fact, this bound represents
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a privacy guarantee for any ML model and can be useful to
guide the design of privacy defense mechanisms.

2. A ML model that does not generalize well is susceptible to
membership inference attacks. Theorem 3.2, which general-
izes [15, Theorem 1], provides a lower bound for the case of
bounded, and tail-bounded loss functions. These results pro-
vide formal evidence that bad generalization leads to privacy
leakage. However, the converse does not hold in general, i.e.
good generalization does not automatically prevent privacy
leakage.

3. We show how our theoretical results might be used in
practical scenarios. For all our use-cases, we find the con-
nection between the success rate of the optimal member-
ship inference attack and the generalization gap via The-
orem 3.2. We consider linear regression of Gaussian data,
which allows us to analytically compute the success rate of
the optimal attacker. Subsequently, we study Deep Neural
Networks (DNNs) for classification of images (CIFAR10) and
hand-written digits (PenDigits).In the former we assess the
quality of the bound given by Theorem 3.2 using the likeli-
hood attack strategy. In the latter we apply several strategies
for attribute inference and compare their effectiveness.

Related Work. Yeom et al. [15] study the interplay be-
tween generalization, differential privacy, attribute and mem-
bership inference attacks. Our work investigates related
questions, but offers a different and complementary per-
spective. While their analysis considers only bounded loss
functions, we extend their results to the more general case
of tail-bounded loss functions. They consider a membership
inference strategy that uses the loss of the target model, yield-
ing an equivalence between generalization gap and success
rate of this attacker. Nonetheless, they prove this equivalence
does not hold in general, in the sense that there are learn-
ing algorithms which generalize well but still leak a large
amount of sensitive information. Similar results were ob-
tained in [3, 9]. In contrast, we consider the optimal Bayesian
attacker with white-box access, yielding an upper bound on
the probability of success of all possible adversaries and also
on the generalization gap. In this line of work, Sablayrolles
et at. [11] derive an optimal attack strategy for membership
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inference. However, their results rely on randomness during
training and assume a specific form in the distribution of
network parameters given the training set. In this sense, our
optimal attacker can be specialized to their framework and
models.

References [12] and [10] utilize membership inference
attacks to measure privacy leakage in deep neural networks.
These works train a classifier to distinguish members from
non-members in both black-box and white-box scenarios.
The attack strategies we consider do not require to train an
attacker model.

A more severe violation of privacy is represented by at-
tribute inference attacks. Mainly two forms of these attacks
have been considered in the literature. The first consists in
inferring a sensitive attribute from a partially known record
plus knowledge of a model that was trained using this record,
e.g. [6, 7, 13]. The second consists in generating a representa-
tive sample of one of the members of the training set, or one
of the classes in a classification problem, by exploiting knowl-
edge of the target model, e.g. [1, 2, 5, 13, 14]. Our framework
is applicable to both forms, but in this work we focus on the
former, i.e. inferring sensitive information from a partially
known record.

2 Preliminaries

We assume a fully Bayesian framework, where Z = (X, Y) ~
pxy = pz denotes data X and corresponding labels Y, drawn
from sets X and Y, respectively. The training set consists of
niid. copies Dy, = {z1,...,z,} drawn according to Z ~ p7.
Let ¥ = {fy| 0 € © C RY} be a hypothesis class of (possibly
randomized) decision functions parameterized with 6, i.e.,
for every 0 € O, fy( - ;x) is a probability distribution on Y.
The symbol Yy (x) will be used to denote the random variable
on Y distributed according to fp( -;x).

A learning algorithm is a (possibly randomized) algorithm
A that assigns to every training set D, € (X X Y)" a prob-
ability distribution on the parameter space ® (and, thus, also
on the hypothesis space ). We have A: D, — A(-;D,),
where A( - ;Dy,) is a probability distribution on ©. The
symbol g(Dn) is used to denote a random variable on ©,
distributed according to A( - ; Dy).

To judge the quality of a decision function f € F we
require a loss function £: Y x Y — R. We naturally extend
this definition to vectors by an average over component-wise
application, ie., £(y,y’) = = X1 £(yi. y)).

Definition 2.1 (Generalization Gap). The generalization er-
ror! and the empirical risk? of a learning algorithm A at

I The expectation is taken over all quantities: 0~ A3 Dn), ffé(y) ) (X) ~
f§( . ;X) and, (X,Y) ~ pz.

ZNote that the empirical risk is computed using the training data of the
algorithm.
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training set D, are respectively defined as:

E(ADy) = E|t (T, 0.Y)|. (1)

%Zn:f (?9*(@") (x:), yi)l )

i=1

Eemp(A, D) = E

The difference between generalization error and empirical
risk is the generalization gap

EG(A, Dp) = E(A, D) - Semp(ﬂ’ Dy) . (3)

In order to make privacy guarantees for an algorithm A,
we need to specify an attacker model and the capabilities
of the attacker. We will not make assumptions about the
computation power afforded to an attacker. We will assume
that the attacker has perfect knowledge of the underlying
data distribution pz, as well as the algorithm A.

In general, the goal of the attacker is to infer some prop-
erty of D, from 5(1),,). However, in general the attacker
may have access to certain side information. This may in-
clude the specific potential member of the training set that
is queried (in case of a membership inference attack) or any
additional knowledge gained by the attacker. This side infor-
mation is modeled by a random variable S € S, dependent
on Z, the value of which is known to the attacker. The at-
tacker is interested in a target (or concept) property denoted
by a random variable T € 7, which is also dependent on
(Z,S). A (white box) attack strategy is a (measurable) func-
tion ¢: ®© X S — 7. We shall assume that S and T are
independent, but not necessarily conditionally independent
given Z. This natural assumption ensures that knowledge of
the side-information S does not change the prior pr = pr|s.

Definition 2.2. The Bayes success probability of an attack
strategy ¢ is given by Psuc () = P{p(0(Z),S) =T}.

Definition 2.3 (Attribute inference attack). We model the
non-sensitive attribute by a random variable V € V. In this
context, the input to the model is formed by the sensitive and
non-sensitive attributes X = (V,T). Thus X € V X 7. The
side information given to the attacker can consist of S =V
or S = (V,Y), depending on the attack strategy considered.

Definition 2.4 (Membership inference attack). In a mem-
bership inference attack, let T be a Bernoulli variable on
7 ={0,1} and J is independently, uniformly distributed on
{1,2,...,n}. Thenset S = TZ; + (1 - T)Z, where Zj is a ran-
dom element of the training set and Z ~ p is independently
drawn. Thus, an attacker needs to determine if T = 1, i.e.,
whether S is part of the training set or not. We also define
the expected loss function p (0, (x,y)) = E[¢(Yp(x), y)] and

the corresponding random variable R = o(6(Z), S).

3 Main Results

We begin by establishing a theorem that provides upper
bounds on the success probability on an arbitrary attacker.
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The theorem considers the general case in which the target
attribute T is not necessarily binary, but discrete. This case
includes both membership and feature inference attacks. In
this case the Bayes classifier is the best possible attacker.

Theorem 3.1 (Success of the optimal attacker). Assume that
T is a finite set and ¢ is an arbitrary attack strategy. The Bayes
success probability is upper bounded by,

Pouc(9) < B maxpp 5, o(116(2).5) |, (4)
where the upper bound is achieved by the attack strategy,
9" (0,5) = argmaxpr 5.7,(110.5) . (5)

If the arg max in Eq. (5) is not unique, any t € T achieving
the maximum can be chosen.

Given white-box access to the model and its parameters,
as well as side information, the attacker in 5 has the highest
probability of successfully identifying a record in the train-
ing set. Thus, robustness against strategy Eq. (5) provides a
strong privacy guarantee.

Now we explore the connection between generalization
gap and the success probability of membership inference
attacks. Large generalization gap implies poor privacy guar-
antees against membership inference attacks. Moreover, de-
pending on characteristics of the loss function, the prob-
ability of success of the attacker is lower bounded by the
generalization gap:

Theorem 3.2 (Lower Bounds on Success Rate of the Optimal
Attacker). Provided the loss |€| < €pax, then there is an attack
strategy ¢ for a membership inference attack (Definition 2.4)
such that,

Psuc(@) > max {Pm, Pn ( Y.

ElEc(A D) _ 1) +1} o
where Py, = max; e (o1} P{T = t}. Moreover, for a tail-bounded
loss function, we obtain the following result. In a membership
inference problem (Definition 2.4), assume that R = 9(5(2), S)
is such that P{|R| > r} < 2exp(-r/20%) for allr > 0 with
some variance proxy 0123 > 0. Then, for all Ry.x > rg =

20% log 2, there is an attack strategy ¢ such that,

E[&c(A,Z
Pese(p) > max | Py, Py | 126D
ZRmaX
Rimax + 205 -fmax
_ M "R o o2p 1| 41). (7)
Rmax(1 _Pm)

Note that an attacker, knowing the prior probabilities of
T, will have a success probability of at least P,. Theorem 3.2
indicates that strong privacy guarantees (i.e., small success
probability for any attacker), imply that the generalization
gap is also small. Remark that, on the other hand, ensuring
that the generalization gap is small does not make a model
robust against membership inference attacks.
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4 Examples and Numerical Experiments
4.1 Linear Regression on (Synthetic) Gaussian Data

We implement the optimal attacker from Theorem 3.1 and es-
timate its success probability to monitor the privacy leakage
of the model as a function of the number of training samples.
Additionally, since the loss is tail-bounded exponentially,
we use Theorem 3.2 to derive lower bounds on the success
probability of the attacker.

For i € [n], let x; be a fixed vector on R? and for a fixed
vector f € RY let Y; = BTx; + W; with E[W;] = 0 and
E[W?] = ¢® < oo for i € [n]. The training set is D, =
{y1,...,yn}, arealization of ¥; for each i € [n]. The function
space ¥ consists of linear regression functions fy(x;) = 07 x;
for 6 € R and the deterministic algorithm A minimizes
squared error on the training set and thus yields® g(y) =
(xx7)~'xy” and the associated decision function fé\(y) (x;) =
yx! (xxT)~1x;. Using squared error loss, £(y,y’) = (y — y’)?,
we obtain the generalization gap,

E[E6(A.Z)] = 27“’02. (8)

Assuming the noise W to be Gaussian, the scalar response
Y= ﬁTx + W then also follows a Gaussian distribution, with
W a row vector of i.i.d components. Similarly, the model
parameters §(Y) are normally distributed. Now choose a
test sample S = T(Y;) + (1 — T)(Y]’), where J is a random
index in [n], Y; is the J — th component of the (random)
training set and Y7 is drawn independently of the training
set. Assuming a Bernoulli 1/2 prior on the hypothesis T,
we derive the success probability of the optimal attacker. In
our experiments we perform a Monte Carlo estimation of
the expectation in Eq. (4), by randomly drawing T, s and 6.
The posterior distributions can be computed in closed form
with the above definitions. Since the loss is exponentially
tail-bounded, we use Theorem 3.2 to obtain the lower bound

2 2

Pucle®) 2 3+ g e (-2 ) (14 2], )

2 2n Rpax 202 Rax
where we used Eq. (8). Ryax can be chosen to maximize the
lower bound.

In our experiments we vary n to study how the gener-
alization gap and success rate of the attacker evolve as a
function of the number of training samples. The dimension
of the feature space is fixed to d = 20. For each value of
n, we fix x and we estimate the success rate of the optimal
attacker. Additionally, we compute the generalization gap
Eq. (8) to obtain the lower bound Eq. (9). Figure 1(a) shows
the success rate (SR) of the optimal attacker as a function
of n, the number of training samples. Along with it is the
lower bound (LB) provided by Theorem 3.2. This example
shows that the bounds are not vacuous and they may serve

3Let x be the [d X n] matrix x = (x1,x2,..., Xp). Similarly, y =
(y1, Y2, - - -» Yn) and W = (W}, Wy, ..., Wy,) are [1 X n] vectors.
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(a) Multivariate Gaussian data.
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(b) CIFAR10 dataset.

Figure 1. Success Rate (SR), Lower Bound (LB), Accuracy
(Acc; legend on the right axis) as function of training samples
n.

as a framework for understanding the connection between
information leakage and generalization in ML.

4.2 Examples on DNNs

We train DNNs on CIFAR10 [8] to study the interplay be-
tween generalization gap and the success rate of an attacker
that uses the confidence of the target model as a criterion
for the attack. We compare the success rate of the attacker
to the lower bound provided by Theorem 3.2, to assess the
quality of the bound.

The loss function used for training and for computing the
generalization gap is the Mean Squared Error (MSE) loss
between the one-hot encoded labels and the soft probabil-
ities output by the network. Note that this loss function is
bounded, which allows us to apply Theorem 3.2 to lower
bound the success probability of the optimal attacker. How-
ever, in this setup it results impossible to estimate the success
probability of the optimal attacker, due to the high number
of model parameters. To circumvent this limitation and as-
sess the quality of the bound provided by Theorem 3.2, we
implement the likelihood attack and compare its success
rate to the bound provided. This attack exploits the level
of confidence of a trained model in its prediction, based on
the assumption that the model will make more confident
predictions on samples that were part of its training set.

The success rate (SR) of the likelihood attack, the lower
bound (LB) provided by Theorem 3.2, and the accuracy on
the test set (Acc) are computed as a function of the number
of samples in the training set n and reported in Figure 1(b).
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Figure 2. Success Rate of different attribute inference attack
strategies.

The lower bound predicts the behaviour of the success rate
of the likelihood attack as a function of the generalization
gap; both approach 0.5 as the generalization gap vanishes.

4.3 Attribute Inference on PenDigits

To demonstrate the risk of information leakage from ML
models, we consider attribute inference attacks against a
model that classifies hand-written digits. We consider the
PenDigits dataset [4], as it contains identity information
about the writers, which we use as the sensitive attribute.
The target model is a fully-connected network trained to
classify hand-written digits.

Next, we discuss the attack strategies considered against
the model. Since 7 is finite, our attack strategy consists on
testing every possible value of T and choosing the most likely
value according to some criteria.

Confidence: The intuition behind this attack is that a
model is more confident on samples that were part of its
training. The side information given to the attacker are the
non-sensitive attributes, s = v. This strategy chooses the
sensitive attribute that outputs the highest score, i.e.,

¢(v,0) = arg max [maxﬁoi((v, t))] , (10)
te7  Li€lY|

where faf is the i-th component of the output of the model

parametrized by 0.

Accuracy: In contrast to the previous one, this strategy
chooses the sensitive attribute that produces the right pre-
diction with the highest score. The side information given
to the attacker are the non-sensitive attributes and the label,
s = (v, y). Define set )?yg 2 {x € X : argmax(fy(x)) =y},

maxlﬁ,f((v, t))] . (11)

.y, 0) =
¢(0,y,0) = argmax max

tE'T:XEXyg

Loss: This attack, based on the value of the loss, tries to min-
imize the loss function over samples present in the model’s
training set; while the next attack uses the norm of its gra-
dient with respect to the model parameters. The side infor-
mation given to the attacker is the non-sensitive attributes
and the label: s = (v, y). This strategy chooses the sensitive
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attribute that minimizes the loss, i.e.,

¢(0.y,0) = argr;l_inf (fo((v,0)),y) - (12)
te

Gradient: Near a minimum, the norm of the gradient of the
loss function with respect to its model parameters should ap-
proach 0; the attacker exploits this knowledge for the present
attack strategy. The side information given to the attacker
are the non-sensitive attributes and the label, s = (v, y). This
strategy chooses the sensitive attribute that minimizes the
gradient norm, i.e.,

¢(0,y,0) = arg?inllVel’(fe((v, Dl (13)

In our experiments we perform attribute inference attacks
using each of these strategies as we vary n. The success rates
for each strategy are computed and reported in Figure 2.
In this setup, a random guess would amount to a success
rate of approximately 2.3%. For a small training set (100
samples), the attacker has a gain of 25% over a random guess.
This decreases significantly with the size of the training set;
however, even for a large training set, the attacker still has
twice as much accuracy as a random guess.
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