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ABSTRACT
We initiate a study of the composition properties of interactive
differentially private mechanisms.

1
An interactive differentially

private mechanism is an algorithm that allows an analyst to adap-

tively ask queries about a sensitive dataset, with the property that

an adversarial analyst’s view of the interaction is approximately

the same regardless of whether or not any individual’s data is in

the dataset. Previous studies of composition of differential privacy

have focused on non-interactive algorithms, but interactive mecha-

nisms are needed to capture many of the intended applications of

differential privacy and a number of the important differentially

private primitives.

We focus on concurrent composition, where an adversary can

arbitrarily interleave its queries to several differentially private

mechanisms, which may be feasible when differentially private

query systems are deployed in practice. We prove that when the

interactive mechanisms being composed are pure differentially pri-

vate, their concurrent composition achieves privacy parameters

(with respect to pure or approximate differential privacy) that match

the (optimal) composition theorem for noninteractive differential

privacy. We also prove a composition theorem for interactive mech-

anisms that satisfy approximate differential privacy. That bound

is weaker than even the basic (suboptimal) composition theorem

for noninteractive differential privacy, and we leave closing the

gap as a direction for future research, along with understanding

concurrent composition for other variants of differential privacy.

CCS CONCEPTS
• Security and privacy→ Information-theoretic techniques;
• Theory of computation→ Cryptographic primitives.
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1 INTRODUCTION
1.1 Differential Privacy
Differential privacy is a framework for protecting privacy when

performing statistical releases on a dataset with sensitive informa-

tion about individuals. (See the surveys [9, 22].) Specifically, for

a differentially private mechanism, the probability distribution of

the mechanism’s outputs of a dataset should be nearly identical to

the distribution of its outputs on the same dataset with any single

individual’s data replaced. To formalize this, we call two datasets

𝑥 , 𝑥 ′, each multisets over a data universe X, adjacent if one can be

obtained from the other by adding or removing a single element of

X.

Definition 1 (Differential Privacy [7]). For 𝜀, 𝛿 ≥ 0, a randomized
algorithmM : MultiSets(X) → Y is (𝜀, 𝛿)-differentially private if
for every pair of adjacent datasets 𝑥, 𝑥 ′ ∈ MultiSets(X), we have:

∀𝑇 ⊆ Y Pr[M(𝑥) ∈ 𝑇 ] ≤ 𝑒𝜀 · Pr[M(𝑥 ′) ∈ 𝑇 ] + 𝛿 (1)

where the randomness is over the coin flips of the algorithmM.

In the practice of differential privacy, we generally view 𝜀 as

“privacy-loss budget” that is small but non-negligible (e.g., 𝜀 = 0.1),

and we view 𝛿 as cryptographically negligible (e.g., 𝛿 = 2
−60

). We

refer to the case where 𝛿 = 0 as pure differential privacy, and the

case where 𝛿 > 0 as approximate differential privacy.

1.2 Composition of Differential Privacy
A crucial property of differential privacy is its behavior under com-

position. If we run multiple distinct differentially private algorithms

on the same dataset, the resulting composed algorithm is also differ-

entially private, with some degradation in the privacy parameters

(𝜀, 𝛿). This property is especially important and useful since in

practice we rarely want to release only a single statistic about a

dataset. Releasing many statistics may require running multiple

differentially private algorithms on the same database. Composition

is also a very useful tool in algorithm design. In many cases, new

differentially private algorithms are created by combining several

simpler algorithms. The composition theorems help us analyze the

privacy properties of algorithms designed in this way.

Formally, let M0,M1, . . . ,M𝑘−1 be differentially private mech-

anisms, we define the composition of these mechanisms by inde-

pendently executing them. Specifically, we define

M = Comp(M0,M1, . . . ,M𝑘−1)
as

M(𝑥) = (M0 (𝑥), . . . ,M𝑘−1 (𝑥))
where each M𝑖 is run with independent coin tosses. For example,

this is how we might obtain a mechanism answering a 𝑘-tuple of

queries.

A handful of composition theorems already exist in the liter-

ature. The Basic Composition Theorem [7] says that the privacy
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degrades at most linearly with the number of mechanisms executed.

However, if we are willing to tolerate an increase in the 𝛿 term,

we obtain the Advanced Composition Theorem [11] where the

privacy parameter 𝜀 only needs to degrade proportionally to the

square root of number of mechanisms executed. Despite giving an

asymptotically correct upper bound for the global privacy parame-

ter, the Advanced Composition Theorem is not exact. Kairouz, Oh,

and Viswanath [17] shows how to compute the optimal bound for

composing 𝑘 mechanisms where all of them are (𝜀, 𝛿)-differentially
private. Murtagh and Vadhan [20] further extends the optimal com-

position for the more general case where the privacy parameters

may differ for each algorithm in the composition.

1.3 Interactive Differential Privacy
The standard treatment of differential privacy, as captured by Defi-

nition 1, refers to a noninteractive algorithmM that takes a dataset

𝑥 as input and produces a statistical release M(𝑥), or a batch by

takingM = Comp(M0, . . . ,M𝑘−1). However, in many of the moti-

vating applications of differential privacy, we don’t want to perform

all of our releases in one shot, but rather allow analysts to make

adaptive queries to a dataset. Thus, we should view the mechanism

M as a party in a two-party protocol, interacting with a (possibly

adversarial) analyst.

To formalize the concept of interactive DP, we recall one of

the standard formalizations of an interactive protocol between two

parties 𝐴 and 𝐵. We do this by viewing each party as a function,

taking its private input 𝑥 , all messages it has received (𝑚0,𝑚1, . . . , ),
and the party’s random coins 𝑟 , to the party’s next message to be

sent out.

Definition 2 (Interactive protocols). An interactive protocol (𝐴, 𝐵)
is any pair of functions. The interaction between𝐴with input𝑥𝐴 and𝐵
with input𝑥𝐵 is the following random process (denoted (𝐴(𝑥𝐴), 𝐵(𝑥𝐵))):

(1) Uniformly choose random coins 𝑟𝐴 and 𝑟𝐵 (binary strings) for
𝐴 and 𝐵, respectively.

(2) Repeat the following for 𝑖 = 0, 1, . . .:
(a) If 𝑖 is even, let𝑚𝑖 = 𝐴 (𝑥𝐴,𝑚1,𝑚3, . . . ,𝑚𝑖−1; 𝑟𝐴).
(b) If 𝑖 is odd, let𝑚𝑖 = 𝐵 (𝑥𝐵,𝑚0,𝑚2, . . . ,𝑚𝑖−1; 𝑟𝐵).
(c) If𝑚𝑖−1 = halt, then exit loop.

We further define the view of a party in an interactive protocol

to capture everything the party “sees” during the execution:

Definition 3 (View of a party in an interactive protocol). Let (𝐴, 𝐵)
be an interactive protocol. Let 𝑟𝐴 and 𝑟𝐵 be the random coins for 𝐴
and 𝐵, respectively. 𝐴’s view of (𝐴(𝑥𝐴; 𝑟𝐴), 𝐵(𝑥𝐵 ; 𝑟𝐵)) is the tuple
View𝐴⟨𝐴(𝑥𝐴; 𝑟𝐴), 𝐵(𝑥𝐵 ; 𝑟𝐵)⟩ = (𝑟𝐴, 𝑥𝐴,𝑚0,𝑚1, . . .) consisting of all
the messages received by 𝐴 in the execution of the protocol together
with the private input 𝑥𝐴 and random coins 𝑟𝐴 . If we drop the random
coins 𝑟𝐴 and/or 𝑟𝐵 , View𝐴⟨𝐴(𝑥𝐴), 𝐵(𝑥𝐵)⟩ becomes a random variable.
𝐵’s view of (𝐴(𝑥𝐴), 𝐵(𝑥𝐵)) is defined symmetrically.

In our case, 𝐴 is the adversary and 𝐵 is the mechanism whose

input is usually a database 𝑥 . Since 𝐴 does not have an input in our

case, we will denote the interactive protocol as (𝐴, 𝐵(𝑥)) for the
ease of notation. Since we will only be interested in 𝐴’s view and

𝐴 does not have an input, we will drop the subscript and write 𝐴’s

view as View⟨𝐴, 𝐵(𝑥)⟩.

Now we are ready to define the interactive differential privacy

as a type of interactive protocol between an adversary (without

any computational limitations) and an interactive mechanism of

special properties.

Definition 4 (Interactive Differential Privacy). A randomized al-
gorithm M is an (𝜀, 𝛿)-differentially private interactive mechanism

if for every pair of adjacent datasets 𝑥, 𝑥 ′ ∈ MultiSets(X), for every
adversary algorithm A we have: we have
∀𝑇 ⊆ Range (View⟨A,M(·)⟩) ,
Pr [View⟨A,M(𝑥)⟩ ∈ 𝑇 ] ≤ 𝑒𝜀 Pr

[
View⟨A,M(𝑥 ′)⟩ ∈ 𝑇

]
+ 𝛿

(2)

where the randomness is over the coin flips of both the algorithm M
and the adversary A.

In addition to being the “right” modelling for many applications

of differential privacy, interactive differential privacy also captures

the full power of fundamental DP mechanisms such as the Sparse

Vector Technique [8, 21] and Private Multiplicative Weights [16],

which are in turn useful in the design of other DP algorithms (which

can use these mechanisms as subroutines and issue adaptive queries

to them). Interactive DP was also chosen as the basic abstraction

in the programming framework for the new open-source software

project OpenDP [13], which was our motivation for this research.

Despite being such a natural and useful notion, interactive DP

has not been systematically studied before. It has been implicitly

studied in the context of distributed forms of DP, starting with [1],

where the sensitive dataset is split amongst several parties, who

execute a multiparty protocol to estimate a joint function of their

data, while each party ensures that their portion of the dataset

has the protections of DP against the other parties. Indeed, in an

𝑚-party protocol, requiring DP against malicious coalitions of size

𝑚 − 1 is equivalent to requiring that each party’s strategy is an

interactive DP mechanism in the sense of Definition 4. An extreme

case of this is the local model of DP, where each party holds a single

data item in X representing data about themselves [18]. There has

been extensive research about the power of interactivity in local DP;

see [5] and the references therein. In contrast to these distributed

models, in Definition 4 we are concerned with the centralized DP
scenario where only one party (M) holds sensitive data, and how

an adversarial data analyst (A) may exploit adaptive queries to

extract information about the data subjects.

Some of the aforementioned composition theorems for nonin-

teractive DP, such as in [11, 20], are framed in terms of an adaptive

“composition game” where an adversary can adaptively select the

mechanisms M0, . . . ,M𝑘−1, and thus the resulting composition

Comp(M0, . . . ,M𝑘−1) can be viewed as an interactive mechanism,

but the results are not framed in terms of a general definition of

Interactive DP. In particular, the mechanisms M𝑖 being composed

are restricted to be noninteractive in the statements and proofs of

these theorems.

1.4 Our Contributions.
In this paper, we initiate a study of the composition of interactive

DP mechanisms. Like in the context of cryptographic protocols,

there are several different forms of composition we can consider.

The simplest is sequential composition, where all of the queries
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to M𝑖−1 must be completed before any queries are issued to M𝑖 .

It is straightforward to extend the proofs of the noninteractive

DP composition theorems to handle sequential composition of

interactive DP mechanisms; in particular the Optimal Composition

Theorem extends to this case. (Details omitted.)

Thus, we turn to concurrent composition, where an adversary can

arbitrarily interleave its queries to the 𝑘 mechanisms. Although

the mechanisms use independent randomness, the adversary may

create correlations between the executions by coordinating its ac-

tions; in particular, its queries in one execution may also depend on

messages it received in other executions. Concurrent composability

is important for the deployment of interactive DP in practice, as one

or more organizations may set up multiple DP query systems on

datasets that refer to some of the same individuals, and we would

not want the privacy of those individuals to be violated by an ad-

versary that can concurrently access those systems. Concurrent

composability may also be useful in the design of DP algorithms; for

example, one might design a DP machine learning algorithm that

uses adaptive and interleaved queries to two instantiations of an

interactive DP mechanism like the Sparse Vector Technique [8, 21].

Although the concurrent composition for the case of differential

privacy has not been explored before, it has been studied extensively

for many primitives in cryptography, and it is often much more

subtle than the sequential composition (See the surveys [4, 14]).

For example, standard zero-knowledge protocols are no longer

zero-knowledge when a single prover is involved in multiple, si-

multaneous zero-knowledge proofs with one or multiple verifiers

[12, 15].

Our findings is summarized as follows:

• We prove a composition theorem for interactive mechanisms

that satisfy approximate differential privacy, where the bound

for 𝛿 is weaker than the basic composition theorem for nonin-

teractive differential privacy.

• Weprove that when the interactivemechanisms being composed

are pure differentially private, their concurrent composition

achieves privacy parameters (with respect to pure or approxi-

mate differential privacy) that match the (optimal) composition

theorem for noninteractive differential privacy.

• Based on computer experiments, we conjecture that the Optimal

Composition Theorems can be extended to the concurrent com-

position of approximate DP mechanisms. We leave closing the

gap as a direction for future research, along with understand-

ing concurrent composition for other variants of differential

privacy.

2 DEFINITIONS AND BASIC PROPERTIES
The formal definition of the concurrent composition of interactive

protocols is provided here.

Definition 5 (Concurrent Composition of Interactive Protocols).
Let M0, . . . ,M𝑘−1 be interactive mechanisms. We say

M = ConComp(M0, . . . ,M𝑘−1)
is the concurrent composition of mechanismsM0, . . . ,M𝑘−1 ifM
runs as follows:

(1) Random coin tosses forM consist of 𝑟 = (𝑟0, . . . , 𝑟𝑘−1) where
𝑟 𝑗 are random coin tosses forM 𝑗 .

(2) Inputs forM consists of 𝑥 = (𝑥0, . . . , 𝑥𝑘−1) where 𝑥 𝑗 is private
input forM 𝑗 .

(3) M(𝑥,𝑚0, . . . ,𝑚𝑖−1; 𝑟 ) is defined as follows:
(a) Parse𝑚𝑖−1 as (𝑞, 𝑗) where 𝑞 is a query and 𝑗 ∈ [𝑘]. If𝑚𝑖−1

cannot be parsed correctly, output halt.
(b) Extract history (𝑚 𝑗

0
, . . . ,𝑚

𝑗

𝑡−1) from (𝑚0, . . . ,𝑚𝑖−1) where
𝑚

𝑗
𝑖
are all of the queries to mechanismM 𝑗 .

(c) Output M 𝑗 (𝑥 𝑗 ,𝑚 𝑗

0
, . . . ,𝑚

𝑗

𝑡−1; 𝑟 𝑗 ).

We are mainly interested in the case where all mechanisms

operate on the same dataset, i.e., the private input for each M𝑖 are

all the same.

We show that to prove an interactive DP mechanism is (𝜀, 𝛿)-
differentially private, it suffices to consider all deterministic adver-

saries.

Lemma 1. An interactive mechanism M is (𝜀, 𝛿)-differentially pri-
vate if and only if for every pair of adjacent datasets 𝑥, 𝑥 ′, for every
deterministic adversary algorithm A, for every possible output set
𝑇 ⊆ Range (View⟨A,M(·)⟩) we have

Pr [View⟨A,M(𝑥)⟩ ∈ 𝑇 ] ≤ 𝑒𝜀 Pr
[
View⟨A,M(𝑥 ′)⟩ ∈ 𝑇

]
+ 𝛿 (3)

More properties of concurrent compositions are be provided in

the full version of the paper.

3 BASIC COMPOSITION THEOREM FOR
CONCURRENT COMPOSITION

Our first result is roughly an analogue of the Basic Composition

Theorem.

Theorem 2. If interactive mechanisms M0, . . . ,M𝑘−1 are each
(𝜀, 𝛿)-differentially private, then their concurrent composition

ConComp(M0, . . . ,M𝑘−1) is
(
𝑘 · 𝜀, 𝑒𝑘𝜀−1𝑒𝜀−1 · 𝛿

)
-differentially private.

More generally, if interactivemechanismM𝑖 is (𝜀𝑖 , 𝛿𝑖 )-differentially
private for 𝑖 = 0, . . . , 𝑘−1, thenConComp(M0, . . . ,M𝑘−1) is

(
𝜀𝑔, 𝛿𝑔

)
-

differentially private where 𝜀𝑔 =
∑𝑘−1
𝑖=0 𝜀𝑖 , and 𝛿𝑔 =

∑𝑘−1
𝑖=0 𝑒

∑𝑖−1
𝑗=0 𝜀 𝑗 ·𝛿𝑖 .

Just like in the Basic Composition Theorem for noninteractive

DP, the privacy-loss parameters 𝜀𝑖 just sum up. However, the bound

on 𝛿𝑔 is worse by a factor of at most 𝑒𝜀𝑔 . In the typical setting where

we want to enforce a global privacy loss of 𝜀𝑔 = 𝑂 (1), this is only a

constant-factor loss compared to the Basic Composition Theorem,

but that constant can be important in practice. Note that expression

for 𝛿𝑔 depends on the ordering of the 𝑘 mechanismsM0, . . . ,M𝑘−1,
so one can optimize it further by taking a permutation of the mech-

anisms that minimizes 𝛿𝑔 .

The proof idea is that in an interactive protocol where the ad-

versary is concurrently interacting with multiple mechanisms, its

interaction with one particular mechanism could be viewed as the

combination of the adversary and the remaining mechanisms inter-

acting with that mechanism, and the differential privacy guarantee

still holds for the “combined adversary”. We can then construct a

standard hybrid argument. Specifically, we compare the distribu-

tions of 𝐻0 = View⟨A,ConComp(M0 (𝑥),M1 (𝑥), . . . ,M𝑘−1 (𝑥))⟩
and 𝐻𝑘 = View⟨A,ConComp(M0 (𝑥 ′),M1 (𝑥 ′), . . . ,M𝑘−1 (𝑥 ′))⟩
on adjacent datasets 𝑥, 𝑥 ′ by changing 𝑥 to 𝑥 ′ for one mechanism

at a time, so that 𝐻𝑖−1 and 𝐻𝑖 differ only on the input to M𝑖−1.
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To relate 𝐻𝑖−1 and 𝐻𝑖 we consider an adversary strategy A𝑖 that

emulatesA’s interaction withM𝑖−1, while internally simulating all

of the other M 𝑗 ’s. Applying a “triangle inequality” to the distance

notion given in Requirement (2) yields the result. We note that the

proof is very similar to the proof of the group privacy property of

(noninteractive) differential privacy, where (𝜀, 𝛿)-DP for datasets

that differ on one record implies

(
𝑘 · 𝜀, 𝑒𝑘𝜀−1𝑒𝜀−1 · 𝛿

)
for datasets that

differ on 𝑘 records.

4 ADVANCED COMPOSITION THEOREM FOR
PURE CONCURRENT COMPOSITION

Next we show that the Advanced and Optimal Composition Theo-

rems for noninteractive DP can be extend to interactive DP, pro-

vided that the mechanismsM𝑖 being composed satisfy pure DP (i.e.

𝛿𝑖 = 0). Note that the final composed mechanism

ConComp(M0, . . . ,M𝑘−1) can be approximate DP, by taking 𝛿𝑔 =

𝛿 ′ > 0, and thereby allowing for a privacy loss 𝜀𝑔 that grows linearly

in

√
𝑘 rather than 𝑘 .

We do this by extending the main proof technique of [17, 20] to

interactive DP mechanisms. Specifically, we reduce the analysis of

interactive (𝜀, 0)-DP mechanisms to that of analyzing the following

simple “randomized response” mechanism:

Definition 6 ([17]). For 𝜀 > 0, 𝛿 ∈ [0, 1], define a randomized
noninteractive algorithm RR(𝜀,𝛿) : {0, 1} → {0, 1, ‘Iam0’, ‘Iam1’}
as follows:

Pr

[
RR(𝜀,𝛿) (0) = ‘Iam0’

]
= 𝛿 Pr

[
RR(𝜀,𝛿) (1) = ‘Iam0’

]
= 0

Pr

[
RR(𝜀,𝛿) (0) = 0

]
=

𝑒𝜀 (1−𝛿)
1+𝑒𝜀 Pr

[
RR(𝜀,𝛿) (1) = 0

]
= 1−𝛿

1+𝑒𝜀
Pr

[
RR(𝜀,𝛿) (0) = 1

]
= 1−𝛿

1+𝑒𝜀 Pr

[
RR(𝜀,𝛿) (1) = 1

]
=

𝑒𝜀 (1−𝛿)
1+𝑒𝜀

Pr

[
RR(𝜀,𝛿) (0) = ‘Iam1’

]
= 0 Pr

[
RR(𝜀,𝛿) (1) = ‘Iam1’

]
= 𝛿

Note that RR(𝜀,𝛿) is a noninteractive (𝜀, 𝛿)-DP mechanism. For

simplicity, when 𝛿 = 0, we denote the mechanism as RR𝜀 . We show

that every interactive (𝜀, 0)-DP mechanism can be, in some sense,

simulated from RR𝜀 :

Theorem 3. Suppose that M is an interactive (𝜀, 0)-differentially
private mechanism. Then for every pair of adjacent datasets 𝑥0, 𝑥1
there exists an interactive mechanism 𝑇 s.t. for every adversary A
and every 𝑏 ∈ {0, 1} we have

View(A,M(𝑥𝑏 )) ≡ View(A,𝑇 (RR𝜀 (𝑏)))

Here 𝑇 is an interactive mechanism that depends onM as well

as a fixed pair of adjacent datasets 𝑥0 and 𝑥1. It receives a single

bit as an output of RR𝜀 (𝑏), and then interacts with the adversary

A just like M would. Kairouz, Oh, and Viswanath [17] proved

Theorem 3 result for the case that M and 𝑇 are noninteractive.

The interactive case is more involved because we need a single 𝑇

that works for all adversary strategies A. (If we allow 𝑇 to depend

on the adversary strategy A, then the result would readily follow

from that of [17], but this would not suffice for our application to

concurrent composition.)

Given the Theorem 3, to analyze

ConComp(M0 (𝑥𝑏 ), . . . ,M𝑘−1 (𝑥𝑏 ))
on 𝑏 = 0 vs. 𝑏 = 1, it suffices to analyze

ConComp(𝑇0 (RR𝜀0 (𝑏)), . . . ,𝑇𝑘−1 (RR𝜀𝑘−1 (𝑏)))

. An adversary’s view interacting with the latter concurrent com-

position can be simulated entirely from the output of

Comp(RR𝜀0 (𝑏), . . . , RR𝜀𝑘−1 (𝑏)), which is the composition of en-

tirely noninteractive mechanisms. Thus, we conclude:

Corollary 4. The Advanced and Optimal Composition Theorems
extend to the concurrent composition of (𝜀𝑖 , 𝛿𝑖 )-interactive DP mech-
anisms M𝑖 provided that 𝛿0 = 𝛿1 = · · · = 𝛿𝑘−1 = 0.

5 FUTUREWORK
We leave the question of whether or not the Advanced and/or Opti-

mal Composition Theorems extend to the concurrent composition

of approximate DP mechanisms (with 𝛿𝑖 > 0) for future work. The

Optimal Composition Theorem for noninteractive approximate DP

[20] is also proven by showing that any noninteractive (𝜀, 𝛿)-DP
mechanism can be simulated by an approximate-DP generalization

of randomized response, RR(𝜀,𝛿) , analogously to Theorem 3.

In the full version of the paper, we present empirical evidence

for our conjecture that the Optimal Composition Theorems can be

extended to the concurrent composition of approximate DP mecha-

nisms. Specifically, we experimentally evaluate the conjecture for

3-message interactive mechanisms with 1-bit messages, and we test

whether instantiations of this 2-round interactive mechanism that

are (𝜀, 𝛿)-DP can be simulated as the interactive post-processing of

randomized response RR(𝜀,𝛿) . In all of our trials, we find a feasible

interactive post-processing algorithm. The implementation details

of the experiment can be found in the full version of the paper.

Based on the above findings, we conjecture that the concurrent

composition of interactive DP mechanisms may still have the same

bound as the composition for noninteractive DP mechanisms. Be-

sides, we might be able to prove it through a similar construction

of interactive post-processing mechanisms as we did in Theorem 3.

This means that every interactive DP mechanisms can be reduced

to noninteractive randomized response. We leave the resolution of

these conjectures for future work.

Another interesting question for future work is analyzing con-

current composition for variants of differential privacy, such as

Concentrated DP [2, 3, 10], Rényi DP [19], and Gaussian DP [6].

Some of these notions require bounds on Rényi divergences, e.g.

that

𝐷𝛼 (View⟨A,M(𝑥)⟩| |View⟨A,M(𝑥 ′)⟩) ≤ 𝜌,

for adjacent datasets 𝑥, 𝑥 ′ and certain pairs (𝛼, 𝜌). Here sequential
composition can be argued using a chain rule for Rényi divergence:

𝐷𝛼 ((𝑌, 𝑍 ) | | (𝑌 ′, 𝑍 ′)) ≤ 𝐷𝛼 (𝑌 | |𝑌 ′) +sup
𝑦

𝐷𝛼 (𝑍 |𝑌=𝑦 | |𝑍 ′ |𝑌 ′=𝑦). (4)

Taking 𝑌 to be the view of the analyst interacting withM0 (𝑥), 𝑍 to

be the view of the analyst in a subsequent interaction with M1 (𝑥),
and𝑌 ′

and 𝑍 ′
to be analogously defined with respect to an adjacent

dataset 𝑥 ′, we obtain the usual composition bound of 𝜌0 + 𝜌1 on

the overall Rényi divergence of order 𝛼 , where 𝜌0 and 𝜌1 are the

privacy-loss parameters of the individual mechanisms. However,

this argument fails for concurrent DP, since we can no longer assert

the privacy properties ofM1 conditioned on any possible value𝑦 of

the adversary’s view of the interaction withM0. Unfortunately, the

Chain Rule (4) does not hold if we replace the supremum with an

expectation, so a new proof strategy is needed (if the composition

theorem remains true).
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