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ABSTRACT
Tuning the hyperparameters in the differentially private stochas-
tic gradient descent (DPSGD) is a fundamental challenge. Unlike
the typical SGD, private datasets cannot be used many times for
hyperparameter search in DPSGD; e.g., via a grid search. There-
fore, there is an essential need for algorithms that, within a given
search space, can find near-optimal hyperparameters for the best
achievable privacy-utility tradeoffs efficiently. We formulate this
problem into a general optimization framework for establishing a
desirable privacy-utility tradeoff, and systematically study three
cost-effective algorithms for being used in the proposed framework:
evolutionary, Bayesian, and reinforcement learning. Our experiments,
for hyperparameter tuning in DPSGD conducted on MNIST and
CIFAR-10 datasets, show that these three algorithms significantly
outperform the widely used grid search baseline. As this paper
offers a first-of-a-kind framework for hyperparameter tuning in
DPSGD, we discuss existing challenges and open directions for fu-
ture studies. As we believe our work has implications to be utilized
in the pipeline of private deep learning, we open-source our code
at https://github.com/AmanPriyanshu/DP-HyperparamTuning.

1 INTRODUCTION
Deep neural networks (DNNs) [9] can learn very useful patterns
from large multi-dimensional datasets, enabling motivational appli-
cations; e.g., in health [12, 21]. However, large amounts of training
data are required for not only learning the near-optimal DNN pa-
rameters for the underlying task, but also for finding the right set
of hyperparameters that enable appropriate learning. For a task
defined on public datasets, the same data can be reused as many
times as we wish. But, as every reuse of the available data comes
at a price of some privacy loss, hyperparameter tuning has been a
fundamental challenge for tasks defined on private datasets.

Differential Privacy (DP) [8] provides strong guarantees for the
individuals participating in private datasets. DP restricts the maxi-
mum contribution of each sample on the result of a computation
on the private dataset. Differentially-private stochastic gradient
descent (DPSGD) [1] is a widely accepted algorithm for training
DNNs on private datasets, where zero-mean Gaussian noise, with
a predefined variance, is added to the clipped gradients computed
for each sample in the training dataset at each iteration. Noisy
gradients often result in a degraded accuracy for the trained DNN.

Previous works look at two variants: (1) optimizing privacy pa-
rameters of a private model for achieving comparable performance

to a non-private model and (2) providing privacy guarantees to
reach moderate performance [17]. However, in practice, both hy-
perparameters and privacy parameters need to be optimized within
the user-specified privacy budget. Thus, in this paper, we propose a
systematic study for learning hyperparameters faster (constrained
by a privacy budget) and with less privacy cost through four differ-
ent optimization algorithms.

Although there is a wide range of hyperparameters that one can
choose from in DPSGD (e.g., noise multiplier, clipping factor, batch
size, learning rate, etc.), in this paper, we specifically focus on two
important hyperparameters: noise multiplier 𝜎 (i.e., the standard
deviation of the Gaussian noise) and learning rate [. We optimize
for these two parameters specifically as the epsilon (𝜖 i.e. privacy
leakage) and validation loss (minimizing the validation loss) are
highly dependent on the chosen values for 𝜎 and [, respectively.
To this end, we study three cost-effective algorithms: evolutionary,
Bayesian, and reinforcement learning and compare the results with
the grid search base-line. We also display consistent results across
these techniques and provide insights on which algorithm could
pave the path towards better hyperparameter tuning in DPSGD. We
also open-source our code to enable future practitioners’ optimize
for specific hyperparameters, according to their requirements.

2 RELATEDWORK
The most widely used methods for hyperparameter tuning in deep
learning are manual search, random search, and grid search [16].
Manual search refers to the manual tuning of hyperparameters by
individuals experimenting on a deep neural network. This method is
frequently used due to prior experiences and intuition. On the other
hand, random search provides a path towards hyperparameter space
exploration. However, it is non-exhaustive and may not be able
to discover high-performing hyperparameters. Thus, grid search
is utilized to provide a sufficient exploration within a restricted
search space. Although, due to its non-adaptive nature (i.e., the
hyper-parameter sets selected to be evaluated are not selected using
already available results), it utilizes abundant resources and requires
significant computational time.

Not all common practices in training deep models are always
directly applicable when we apply DPSGD. For instance, [13] shows
that while ReLU is the most common activation function in con-
ventional deep learning, for DPSGD a bounded activation function,
such as tanh or tempered sigmoid, is more efficient. Also, [17] argues
that while SGD hyperparameters and DP parameters are considered

1

ar
X

iv
:2

10
8.

03
88

8v
1 

 [
cs

.L
G

] 
 9

 A
ug

 2
02

1

https://github.com/AmanPriyanshu/DP-HyperparamTuning


independent in the original DPSGD paper [1], this is not a reason-
able assumption. For example, by choosing a smaller batch size,
we can achieve better privacy, but to keep accuracy well, we thus
need to also reduce the learning rate accordingly. However, smaller
learning rates usually slow down the convergence [4], thus we need
more epochs and hence more privacy loss in DPSGD. Therefore,
[17] suggests using a public dataset first, to find an appropriate
DNN architecture with an optimized set of hyperparameters, and
then train the model on the private dataset. However, [17] did not
propose any method for searching over DPSGD hyperparameters.

Model selection in multivariate linear regression under the con-
straint of differential privacy is studied in [11]; based on penalized
least squares and likelihood. Especially, [11] reports that under dif-
ferential privacy, the procedure of model selection becomes more
sensitive to the tuning parameters. Moreover, the appropriate choice
of tuning parameters requires some additional information in the
data, and it is mentioned as a future topic in [11] to develop differ-
entially private methods to estimate these hyperparameters. [14]
introduces AdaCliP, which achieves the same privacy guarantee
with much less added noise by using coordinate-wise adaptive clip-
ping of the gradient. As the convergence of DPSGD depends on
the variance of the gradient, AdaCliP also improves the accuracy of
the trained model. While such an adaptive clipping provides better
tradeoffs, it needs to estimate the variance and thus introduces four
new hyperparameters by itself, making our problem more compli-
cated. Similarly, [2] introduces a method for adaptively tuning the
clipping threshold to track a given “quantile” of the update norm
distribution during training. Again, this method also needs to tune
a new hyperparameter in the range of [0, 1].

The DPareto algorithm is proposed in [3], where Bayesian opti-
mization is used for hyperparameter tuning. The paper describes
the Pareto Front and empirically validates its application using
different neural network architectures across two datasets. Their
study uses the multi-objective Bayesian optimizer to find the best
hyperparameters, utilizing hypervolume to find the relative merit
of different objectives. On the other hand, we use a single-objective
Bayesian optimizer for our study, which reduces computational
costs and aims to optimize the reward function defined by us.

[19] uses reinforcement learning to efficiently tune hyperparam-
eters needed for quantization of deep neural networks and find the
bit-widths for weights of each layer that would provide optimal
computation-accuracy trade-off.

3 METHODOLOGIES
3.1 Problem Formulation
We consider the problem of training a DNNwith a fixed architecture
(i.e., the number, type, and size of each layer) using DPSGD. Let
𝐷𝑡𝑟𝑎𝑖𝑛 denotes the training set and 𝐷𝑣𝑎𝑙𝑖𝑑 denote the validation
set. Let H = {ℎ1, . . . , ℎ𝑁 } denotes the set of 𝑁 hyperparameters
that are used during training on 𝐷𝑡𝑟𝑎𝑖𝑛 and have impact on both
validation loss (𝑣𝑎𝑙_𝑙𝑜𝑠𝑠) and privacy loss in DP (𝜖), on 𝐷𝑣𝑎𝑙𝑖𝑑 . To
provide a general but customizable framework, we define reward
as a weighted linear combination of 𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 and 𝜖 :

𝑟𝑒𝑤𝑎𝑟𝑑 = 𝛼𝑈 .(𝑒−𝑣𝑎𝑙_𝑙𝑜𝑠𝑠 ) + 𝛼𝑃 .(𝑒−𝜖 ) . (1)
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Figure 1: The Pareto frontier of potential privacy-utility
trade-offs. Each point (green/red) shows the trade-off by
choosing a specific set of values for the hyperparameters.

We use regularizers 𝛼𝑈 and 𝛼𝑃 ∈ [0, 1] to control the importance of
utility and privacy, respectively (to control the privacy-utility trade-
off). In our proposed framework, we first set these 𝛼 regularizers,
and then start searching for the optimal hyperparameters in H us-
ing the algorithms explained in the following section. In this paper,
we considerH = {𝜎 , [}, where 𝜎 denotes the noise multiplier and
[ denotes the learning rate; in DPSGD. Our aim for the following
experiments remains to optimize the reward given by Equation (1).
Notice that, in practice, the value of 𝛼𝑈 and 𝛼𝑃 depends on the
requirements of the underlying task.

3.2 Evolutionary optimization
Evolutionary optimization algorithms provide an opportunity to
explore as well as exploit the hyperparameter search space [6, 20].
Its random initialization and mutational attributes allow it to take
advantage of the random search optimization algorithm. In contrast,
its adaptive nature enables it to exploit critical values, which give
better results. In our implementation, we encoded each hyperpa-
rameter as a gene, a set of hyperparameters made up the genome
of an individual, i.e., the experiment. The range and precision for
each hyperparameter are predetermined, allowing the optimization
algorithm to search within a limited search space. The initial popu-
lation is determined by random sampling of hyperparameters from
this search space. Once aggregated, the population is trained, and a
fitness score or reward is measured using 1. Subsequently, each gen-
eration is formed using selection, cross-over, and mutation based
on the individuals with the highest fitness from the previous gen-
eration. The methodology can be optimized for high exploitation,
thereby reducing resource wastage [20].

3.3 Bayesian Optimization
Bayesian optimization treats neural network training and perfor-
mance as a black-box function. It combines prior experience with
the black-box neural network with sample information to approx-
imate the function distribution using the Bayesian formula [18].
Based on this estimation of the function distribution, optimal val-
ues can be extrapolated. The estimate distribution is effectively a
probabilistic model for the function, which exploits this model to
decide where to explore the function next while integrating out
uncertainty [15]. This methodology allows one to find the minima
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Table 1: Comparison of different methods based on the best-
achieved reward and the average time required to attain this
reward for the search space on (A) CIFAR-10 and (B) MNIST.

Method Time Best Reward Accuracy Epsilon (𝜖)
(in hours) (in %) (in %)

(A) CIFAR-10

Grid Search 150.020 51.406 44.936 0.600
Evolutionary 11.064 52.044 37.999 0.599
Bayesian 49.636 51.846 43.864 0.581
Reinforcement 52.971 52.398 44.884 0.590

(B) MNIST

Grid Search 43.712 72.260 89.133 0.683
Evolutionary 5.250 72.615 73.745 0.175
Bayesian 2.853 73.385 81.562 0.349
Reinforcement 31.165 74.906 75.022 0.240

of complex non-convex functions with relatively few evaluations.
However, this is only due to our assumption that the function is
drawn from a Gaussian process prior. Our experiments utilized
Hyperopt, a Sequential Model-Based Optimization (SMBO) that
provides high performance at a low computational budget [5].

3.4 Reinforcement Learning
Evolutionary optimization and Bayesian optimization provide both
adequate methodologies for search space exploration and exploita-
tion. However, this classical problem can also be dealt with by rein-
forcement learning. In our application of this method, we begin by
initializing a regression network capable of estimating the reward
output of training on a particular set of hyperparameters. We start
by sampling a random collection of hyperparameters used to train
the DPSGD model and obtain the reward to fit the regression net-
work. We then proceed to extract the estimated reward of the entire
search space for our hyperparameter tuning. The best-performing
hyperparameters are obtained from this estimation. These hyper-
parameters are mutated to hyperparameters in near proximity to
them for the next episode, thereby allowing the model to exploit
values that may give high performance. Subsequently, in the fol-
lowing episodes, we select a certain percent of experiments based
on the reward estimate of the regression network; in contrast, the
others continue to be randomly sampled. This is determined based
on the epsilon-decreasing strategy, where the value of exploration-
exploitation-epsilon decreases as the experiment progresses. This
methodology allows us to estimate the hyperparameter-reward
function and verify the proximal search space of high-performing
hyperparameters, giving us generalized results.

4 EVALUATION
For the experiments in this section, we used a Tesla P100 16GB as
GPU, with 13GB RAM Intel Xeon as CPU for our experiments. Note
that the random seed is fixed across all experiments for uniformity
and reproducibility purposes. In the rest of this section, we will
discuss the benchmarks used and the results of each experiment.

4.1 Benchmarks
To assess and analyze the effectiveness of optimization algorithms
across both CIFAR-10 and MNIST datasets, we use Grid-Search on
a similar search complexity as the other methods. We display the
computational time taken, best reward achieved, and its respective
accuracy and epsilon value in Table 1. Grid search displays a poor
understanding of the epsilon-accuracy as it is not adaptive in nature.
It achieves a reward of 72.2% and 51.4% on the MNIST and CIFAR-10
datasets, respectively.

4.2 Optimization Algorithms
As described in earlier sections, we ran our experiments over three
distinct optimization algorithms. Here, we observe that although
Reinforcement Learning provides the highest performance, it comes
at the expense of computational time. On the other hand, Evolu-
tionary Algorithms and Bayesian Optimization provide consistent
results with respect to computational time and performance.

Additionally, we can see from Table 1 that although Grid Search
returns a highly accurate model, it is compensated by the high pri-
vacy leakage that occurs due to it. Contrary, adaptive optimization
algorithms can leverage previous samples to search for a better
privacy-utility tradeoff, allowing them to achieve high rewards.
We see that Evolutionary Optimization achieves the lowest epsilon
value for the MNIST dataset. In contrast, Bayesian Optimization
achieves the same for the CIFAR-10 dataset.

4.3 Evaluating Computation Time for
Satisfactory Reward

Although finding the best reward is our goal, we also evaluate
the computational time required by each algorithm to achieve the
maximum reward attained by Grid Search. The time consumed is
calculated based on the time taken for an optimization algorithm
to achieve a reward equal to or greater than the baseline reward.
Here, baseline reward refers to the highest reward achieved by the
Grid Search algorithm. We display these results in Figure 2. It can
clearly be seen that grid search is much more time-consuming in
nature, compared to other optimization algorithms.

From Figure 2, we can observe that Bayesian and evolution-
ary optimization algorithms display consistency and uniformity
across datasets. Whereas, reinforcement-learning-based optimiza-
tion fails to generalize the time taken to achieve a given reward.
This is due to the exploration-exploitation trade-off mechanism
applied by the aforementioned method. An appropriate exploration-
exploitation-epsilon must be selected if the user intends to have a
highly exploitative model for optimization.

4.4 Evaluation Sample-Specific Privacy
In this subsection, we look at sample-specific privacy. We count
the total number of times that each sample has revisited for each
algorithm during optimization. As training on any sample at a given
time can lead to sensitive information leakage, we consider this
an essential feature for privacy evaluation. In Figure 3, we display
a bar graph representing the number of times any sample in the
training set is visited before every model achieves its respective
highest reward. These evaluations continue to display the impracti-
cal nature of Grid Search and validate its high privacy leakage. On
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Figure 2: The time taken by different methodologies to
achieve reward greater than or equal to baseline rewards.

Figure 3: The number of times each sample is re-visited be-
fore the best reward is achieved.

the other hand, Bayesian and Evolutionary Optimization continues
to give expected results compared to the prior. The Reinforcement
Learning approach again displays high variance across datasets,
giving it a weaker generalization capacity.

4.5 Learning and Convergence Analysis of
Reinforcement Learning Approach

We further study the behavior of the reinforcement learning ap-
proach in our analysis through Figure 4. As the model learns over
newer data every epoch, we can observe that we continue to adapt
the expected reward accordingly. The model makes more resolute
changes to the reward estimate nearest to the previous global max-
ima. This allows themodel to exploit better performing hyperparam-
eter values, allowing it to restrict search within a high-performing
area. However, this also supplements that as the number of epochs
increases, estimates which remain unexplored do not change in
value. Therefore, an experimentally robust exploration-exploitation-
epsilon must be selected for generalized results.

On comparing the two datasets, we can see the more complex
nature of the search space for the MNIST dataset. This can be
attributed to the simple complexity of the dataset, which allows
learning over different hyperparameters. However, the CIFAR-10
dataset is much more complex, leading to only the most optimal
hyperparameters being highlighted.

5 CONCLUSION AND FUTUREWORK
In this paper, we discussed different methodologies for hyperpa-
rameter tuning for the private training of deep neural networks
using DPSGD algorithm. We proposed a novel, customizable re-
ward function that allows users to define a single objective function
for establishing their desired privacy-utility tradeoff. We quanti-
fied, compared, and analyzed the methods of grid search (as the
baseline), Bayesian optimization, evolutionary optimization, and
reinforcement learning, across two datasets, CIFAR-10, and MNIST.
We observed that Bayesian and evolutionary optimization behave
similarly in terms of the privacy-utility trade-off point they provide,
and how efficiently they find it. Reinforcement learning, however,
provides a more desirable trade-off but with varying efficiencies
across datasets. All three methods perform much better than the
baseline grid search algorithm. We believe that our work serves
as a valuable resource for privacy-preserving ML practitioners,
developers, and researchers for hyperparameter tuning.

For future work, one can use our proposed method alongside
that of [7, 10], where a portion of the privacy budget is allocated
to finding the appropriate learning rate on the private dataset.
Another direction is to extend our proposed method to tune other
hyperparameters in DPSGD, and even the network architecture
and non-linear activation functions that are used.
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